
Masterarbeit

The Simplex Architecture in Practice –
Runtime Assurance for Safety-Critical

Railway Systems
Die Simplex-Architektur in der Praxis – Konsistenzprüfung zur Laufzeit für

sicherheitskritische Eisenbahnsysteme

Clemens Tiedt

Hasso Plattner Institute at University of Potsdam

March 6, 2024

Masterarbeit

The Simplex Architecture in Practice –
Runtime Assurance for Safety-Critical

Railway Systems
Die Simplex-Architektur in der Praxis – Konsistenzprüfung zur Laufzeit für

sicherheitskritische Eisenbahnsysteme

by

Clemens Tiedt

Supervisors

Prof. Dr. Andreas Polze, Robert Schmid, Katja Assaf
Professur für Betriebssysteme und Middleware

Hasso Plattner Institute at University of Potsdam

March 6, 2024

Abstract

The railway sector is experiencing a shift towards standardized interfaces between com-
mand, control and signalling components. The primary European initiative to develop
such interfaces is EULYNX whose specifications are under active development. While
these interfaces increase interoperability and decouple component lifeycles, updates to
interfaces require updates to the components implementing them. Since safety is the
primary concern in railway operations, components have to go through a thorough certifi-
cation process before they can be used in the field. Updates to safety-critical components
require a recertification of the component. However, the fundamental tasks of railway
components rarely change with interface updates. Most interface updates only add in-
formation (such as additional diagnostics) to messages without changing their existing
contents.

This thesis introduces a concept based on the Simplex architecture to develop a compo-
nent that implements an updated interface whose safety properties are consistent with an
existing, trusted component. We postulate that it is possible to inherit the safety properties
of an existing component at the cost of availability.

We demonstrate the viability of this concept with a prototype for an axle counting object
controller. The prototype uses an existing, certified object controller implementing the
older NeuPro interface to increase the safety of an object controller which implements
the newer EULYNX interface. Using three test cases based on the EULYNX standard, we
show that the prototype handles both correct and incorrect behavior from the untrusted
controller, remaining safe at the cost of reduced availability. An analysis of the prototype’s
source code with the cyclomatic complexity and cognitive complexity metrics shows that
its core safety component, the decision module, requires a low amount of complexity.
Comparing our Simplex-based approach to a EULYNX-NeuPro translation module, our
approach does not need to change with interface updates and likely requires a less complex
implementation.

To make the prototype certifiable, two major changes are necessary. Firstly, the proto-
type runs on a standard Linux computer. In order to be certifiable, it must be adapted for
a safety platform such as ARINC 653. Secondly, the prototype uses an event loop archi-
tecture for time constraints which is not realtime-capable and would have to be replaced
with a periodic architecture and deterministic execution model.

iii

Contents

1 Introduction 3
1.1 CCS Overview . 3

1.2 Digitalization in the Railway Sector . 4

1.3 Introduction to Train Detection Systems . 5

1.4 Further areas of application . 7

1.5 Contribution . 7

2 Background and Related Work 9
2.1 The Simplex Architecture . 9

2.1.1 The Basic Simplex Architecture . 9

2.1.2 Decision Module . 10

2.1.3 Architecture Variants . 12

2.2 Other Dependability Patterns . 13

2.2.1 Triple Modular Redundancy . 13

2.2.2 N-Version Programming . 14

2.2.3 Encoded Execution . 15

2.3 Related Work . 16

2.3.1 Railway Safety . 16

2.3.2 Other Simplex Applications . 18

2.3.3 Other Non-Simplex Applications . 19

3 Concept 21
3.1 Use Case . 21

3.2 Requirements . 22

3.3 System Design . 22

3.3.1 Fault Model . 22

3.3.2 Comparison of Safety Patterns . 24

3.3.3 Error Handling Strategies . 26

3.3.4 Comparison of NeuPro and EULYNX 27

3.4 Architecture . 29

3.4.1 Communication . 29

3.4.2 Unreliable Subsystem . 31

3.4.3 Trustworthy Subsystem . 31

3.4.4 Decision Module . 31

4 Implementation 33
4.1 Tooling . 33

4.1.1 RaSTA Implementation and gRPC-RaSTA Bridge 33

4.1.2 SCI Implementation . 33

v

Contents

4.1.3 Rust . 34

4.2 Hardware . 34

4.3 Software Architecture . 35

4.3.1 Axle Counter and Configuration . 36

4.3.2 Subsystems . 37

4.3.3 Decision Module . 37

4.4 Error Handling Strategies . 39

4.5 Timing Requirements . 43

5 Evaluation 45
5.1 Experimental Evaluation . 45

5.1.1 Scenario . 45

5.1.2 Test Cases . 46

5.1.3 Experimental Setup . 47

5.1.4 Results . 47

5.2 Complexity of Decision Module . 48

5.3 Comparison with NeuPro-EULYNX translator 50

6 Conclusion and Future Work 53
6.1 Conclusion . 53

6.2 Future Work . 54

References 55

A Appendix 61

vi

Disclaimer

Throughout this thesis, I use the pronoun “we” in order to be consistent with the writing
style in the field. This applies to subsection 2.1.2 in particular which is quoted verbatim
from [1]. Despite the use of “we”, the work presented in this thesis was done by me
individually.

1

1 Introduction

New standards and architectures in the railway sector, such as EULYNX, enable a level
of interoperability between infrastructure components that has been impossible in the
existing command, control and signalling (CCS) architecture. This interoperability allows
railway infrastructure managers to combine components from different manufacturers in
one installation and makes it easier for new manufacturers to enter the market by allowing
them to create individual components that are compatible with other manufacturers’
products.

At the same time, safety is the main concern for railway infrastructure. New products
have to go through extensive testing to acquire the certification required to use them
in actual installations. This thesis explores how trust in railway infrastructure can be
inherited across interface updates.

1.1 CCS Overview

The primary task of CCS infrastructure is to ensure the safe operation of the railway
system. At the center of a CCS installation stands the interlocking. From an interlocking,
a signaller manages railway traffic. While the signaller controls the routing of trains,
the interlocking is responsible for the safety of these operations. Depending on the
interlocking type, it monitors one or multiple stations.

Field elements are used to implement routing decisions and report the trackside status
back to the interlocking. Examples of field elements include:

Signals are used to communicate routing information to train drivers. Most modern CCS
installations use light signals which can show different signal aspects that indicate not
only whether a train is allowed to continue onward, but can also contain information
such as the allowed speed and information on the next signal.

Points are used to physically route trains. Usually, points have a straight and a branching
track, although points where both tracks are branching can also exist.

Train Detection Systems are used by the interlocking to check if tracks are vacant or
occupied. Simpler track circuits can only detect if a track is occupied, whereas more
sophisticated axle counters can report exactly how many axles of a train are in the
monitored track section.

In a conventional CCS architecture, the track network is divided into blocks which
form the basis of the safety logic. Blocks are separated by signals and their occupancy is
monitored using train detection systems. By ensuring that at most one train is in a block
at a time, the interlocking guarantees safety from collisions.

3

1 Introduction

99B101 99B102

99B103

T1 T2

Figure 1.1: An example track network. The tracks are divided into three blocks, 99B101 - 99B103

that are each delimited by axle counting heads.

An example of a track network and field elements is shown in Figure 1.1. The network
contains one point () and four signals (). The network is divided into three blocks
which are delimited by axle counting heads () at the start and end. The sections 99B101

and 99B102 are occupied by T1 and T2 respectively. Until T2 moves out of section 99B102,
T1 cannot safely enter it.

Overall, the safety responsibilities of the interlocking can be summarized as guarantee-
ing these properties:

1. Safe Route

2. Safe Speed

3. Safe Distance

1.2 Digitalization in the Railway Sector

Technology has been used to increase the safety of railway operations for a long time.
The first mechanical interlockings were developed in the 19th century. These interlock-
ings implemented the safety logic of their routes mechanically. Signals and points are
controlled via levers. The lever controlling a route’s signal is physically blocked until all
points on that route are set to the correct orientation. Towards the end of the 19th century,
electro-mechanical interlockings were developed [34]. These still use a mechanical safety
logic, but can control field elements electrically.

The next step after electro-mechanical interlockings came in the form of relay inter-
lockings in the 1930s. While a mechanical interlocking ensures the safety of a route, the
signaller still needs to manually set all field elements to the correct position. Relay-based
interlockings display a schematic overview of the controlled area with push buttons for
field elements. Depending on the type of relay interlocking, the signaller has to use these
buttons to set required field elements for a route to the correct position or just press the
buttons for the start and end signal with the interlocking automatically controlling field
elements.

In the 1980s, the first electronic interlockings were developed [23]. Previous types of
interlocking had to be built specifically for one area of supervision. For example, adding
a new point to a relay interlocking requires the addition of new relay groups as well as
rewiring to connect these groups to the existing interlocking. Since the safety logic of an
electronic interlocking is implemented in software, it is much easier to change. However,
the lower dependability of computers compared to purpose-built hardware means that
more effort is necessary to ensure the safety of an electronic interlocking.

4

1.3 Introduction to Train Detection Systems

In a conventional CCS installation, all components are provided by the same manufac-
turer. This means that no standardized communication interfaces between components
are necessary. However, if changes or repairs to the installation become necessary, they
can only be made by the original manufacturer.

Even existing electronic interlockings follow this principle. In contrast to previous
signalling technology, digital systems need updates or replacements much more often.
Additionally, they depend on components (such as processors) that are built by external
manufacturers. If components are purpose-built such as relay groups, replacements
can be manufactured as long as the interlocking remains in use. However, if complex
digital components are not manufactured anymore, no replacement parts for existing
interlockings can be built anymore.

The next generation of interlockings, referred to as digital interlockings addresses these
issues. Like electronic interlockings, digital interlockings are computer-based. However,
they use a component-based architecture with standardized interfaces. EULYNX is an EU-
wide project to define these interfaces. The project was started in 2014 by a consortium of
European railway companies. It expands on previous national efforts such as the German
“Neuausrichtung in der Produktionssteuerung” (new orientation of production control,
abbreviated as NeuPro). EULYNX defines a set of interfaces between the interlocking
and field elements. These standardized interfaces make it possible to use field elements
and interlocking systems from different manufacturers together. Figure 1.2a shows these
interfaces and which components they connect to.

Within the EULYNX specification, there exist subsystems for different field elements.
Each subsystem is associated with a Standard Communication Interface (SCI) which is a
network protocol on the application layer. The SCI protocols operate on top of the Rail Safe
Transport Application (RaSTA) protocol which uses redundant communication channels
and implements retransmission. EULYNX also specifies management and debugging
interfaces. However, we only focus on SCI communication in this thesis.

1.3 Introduction to Train Detection Systems

In order to guarantee the safety of a route, it is important to know the locations of all
trains in the area supervised by a signaller. For example, if a train received movement
permission for a route still occupied by another train, they could collide. Originally, it
was the signaller’s responsibility to ensure that a track is empty by sight. However, this
approach is susceptible to human error and does not scale well for bigger interlockings.

These disadvantages led to the development of train detection systems (TDS). When
using a TDS, the tracks are divided into sections which can be monitored individually.
The track circuit, one form of TDS, was developed as early as 1864 [25]. Track circuits use
an electrical circuit in the train tracks of a section that is shorted when a train occupies
that section. While track circuits address the disadvantages of train detection by sight,
they come with disadvantages of their own. They can only reliably prove if a section is
vacant, since an occupied and disturbed section both register as a short of the track circuit.

Axle counters are another type of TDS. Axle counters use train detection points (TDP)
attached to the tracks to monitor the passing of trains. A TDP is placed at the beginning
and end of each section. When an axle passes the entry TDP, the section is reported

5

1 Introduction

Process data interface

Control interface

Maintenance/Operation/Display interface

Diagnostic interface

Maintenance interface

Legend and notes:

Connector to
Diagnostic System Connector to Wheel

Connector to
Power Supply

Connector to
Maintenance and Data
Management

Connector to
Maintainer

Connector to Train driver
Connector to Basic
Data identifier

EULYNX System

Power supply

Radio Block
Centre

External
Level Crossing

System

Command
Control
System

Automatic
Route Setting

System

Train
Describer

Documentation
System

Adjacent
Interlocking

System Power Supply

 Subsystem – Electronic Interlocking

Subsystem - Maintenance and
Data Management

Subsystem – Light Signal Subsystem – Train Detection System Subsystem – Point Subsystem – Generic IO

Adjacent IO systemsPoint machine
Legacy train
protection

system
EurobaliseIndicator

Configuration
data carrier

Diagnostic
System

Wheel

Basic Data
identifier

Maintainer
Train driver

TDS in adjacent
interlocking area

PS

M

D

PS

Td

BD M W PS M PS BD

M

D W

M

BD

Td

Td

W

PS

MDM

M

BD

D

M

PS

SCI-RBC SCI-LX SCI-CC* SCI-ILS EIL3

SCI-IOSCI-PSCI-TDS

SCI-LS

IO5

IO3IO2IO1P4P3 P2P1TDS5TDS1SCI-ACSTDS2LS7LS6LS5LS4LS3

LS2

LS8

MDM4

MDM3

MDM1

EIL2
EIL4

SDI-DS

IO5

TDS6

P1

LS7

MDM3

EIL4

P4

LS6

LS2

IO1

LS2

Traffic Control System

MDM MDM MDM

PS

IO4

TDS2

EULYNX System architecture
Diagram version: v1.22 20211222
Displayed layer: Phase 2 EULYNX

M BD

MDM MDM MDM

SDI-P
SMI-LSSDI-LS

SMI-TDS SDI-TDS SMI-P SDI-IOSMI-IO

SMI-EIL

SDI-DS

TDS6

SDI-EIL

[Eu.Doc.7_A1]

MDM

MDM

SDI-TDS
SDI-P
SDI-IO
SDI-LC

SMI-TDS
SMI-P
SMI-IO
SMI-LC

EIL1

Centralised
ETCS L1

Controller

SCI-RBC

Subsystem – Level Crossing

M PS BD

SCI-LC

LC1LC3LC2

MDM MDM

SDI-LCSMI-LC

LC2

LC1

BD Local
operator

LC6

TDS1

SCI-XX*
For application of these interfaces between
adjacent systems, refer to Eu.SysDef.556 and
Eu.SysDef.1036

Trackworker
Safety
System

SCI-CC*

Detection
element

LC5

Level crossing
protection

facility

LC4

Subsystem – Communication System

Interface specified in Baseline 4 Release 1

Subsystem – Security Services
Platform

Security interface

SSP

SSI-LS
SSI-TDS

SSI-P
SSI-IO
SSI-LC

SSI-EIL

SSI-MDM

SSP

SSI-IO

SSP

SSI-LC

SSP

SSI-P

SSP

SSI-TDS
SSP

SSI-LS

PS

M

SSP3

SSP2

Security service
interaction SSP1

SSP2

Connector to Security
Services Platform

SSP

(a) Overview of the EULYNX System Architecture, taken from [16]. The highlighted section shows the interfaces
of the subsystem Train Detection System.

W

(b) The excerpt of the EULYNX architecture relevant to this thesis. Interfaces not considered in this thesis are
grayed out.

Figure 1.2: The EULYNX System Architecture and the relevant interfaces for this thesis.

6

1.4 Further areas of application

as occupied. After all axles counted in by the entry TDP have passed the exit TDP, the
section is reported as vacant again. Modern axle counters can monitor multiple sections
by using the exit TDP of one section as the entry TDP of the next one. Compared to
track circuits, axle counting requires more sophisticated equipment, but provides more
fine-grained information about the occupancy status of a section. However, if an axle
counter experiences a failure, the occupancy status of its monitored sections is unknown
since the status is only stored in the axle counter’s state. This does not happen with a
track circuit, since it will be shorted or clear again as soon as power is restored.

Both NeuPro and EULYNX specify protocols for communicating with TDS. These
include management and debugging interfaces, but for this thesis we focus on SCI-TDS
(as shown in Figure 1.2b). In the terminology of EULYNX, one TDS monitors one or
more Track Vacancy Proving Sections (TVPS). A TVPS has an occupancy status which can
be vacant, occupied or disturbed.

1.4 Further areas of application

In the railway sector, high dependability requirements are a challenge to the development
of digital systems. Similar trends appear in other industries as well. For example, electrical
infrastructure must be highly available and reliable. As Petersen et al. outline in [35],
digitalization of the energy infrastructure often takes the form of automated monitoring
and control. For example, a smart energy grid can scale its energy output depending on
current demand. However, increased digitalization opens up new attack surfaces, such as
critical systems connected to the internet.

1.5 Contribution

The railway industry is becoming increasingly digitalized. Part of this digitalization is
the development of standardized interfaces, such as NeuPro and EULYNX. It is common
for these interfaces to be updated regularly to support new capabilities. Updates to an
interface also necessitate updates to the components implementing the interface. While
regular updates are common practice in the software industry, they are unusual for
conventional railway technology since updates require recertification.

However, the safety-critical tasks performed by many railway components do not change
substantially or at all through updated interfaces. Proving the safety of an entirely new
component is difficult and costly. This difficulty could be reduced if it were possible to
use an existing, trusted component to demonstrate the safety of a new component. This
thesis explores whether this inheritance of trust is possible for an axle counting object
controller.

As the proof of concept in Chapter 3 - Chapter 5 is based upon the Simplex architec-
ture, the necessary background information is provided in Chapter 2. Further similar
architecture patterns used for safety-critical applications are also discussed in this chapter.
In Chapter 3, we develop an architecture for an axle counter with inherited trust. The
architecture is based on requirements derived from the axle counting use case. We present
a prototype implementation of this architecture in Chapter 4. While the prototype in its

7

1 Introduction

current state is not certifiable, we discuss the changes necessary for deployment on a safe
platform, such as ARINC 653. Chapter 5 provides a qualitative, experimental evaluation
of the prototype. Using a scenario derived from the EULYNX specification, we show that
the prototype correctly implements the fault model introduced as part of the architecture.
Apart from the experimental evaluation, we also consider the complexity of the proto-
type’s source code. We show that the component responsible for making safety-critical
decisions in the prototype is of low complexity. In Chapter 6, we summarize the results
of our work in this thesis to develop an object controller with inherited trust. We also
discuss the further applicability of our approach beyond the axle counting use case.

8

2 Background and Related Work

Designing dependable systems can be difficult. In order to reduce this difficulty, a number
of dependability patterns have been developed over the years. In this chapter, we introduce
a selection of these patterns. We focus on the Simplex architecture specifically, as it is
the pattern implemented in our prototype. Section 2.1 provides and overview of the
Simplex architecture in general, as well as its components and variants. In Section 2.2,
we discuss a selection of other dependability patterns with a focus on the types of errors
they can handle. Some of these patterns, such as Triple Modular Redundancy, are already
successfully used in railway systems. In Section 2.3, we discuss how dependable systems
are developed today. We start with an overview of techniques from the railway industry.
We also consider other Simplex-based applications as well as similar applications outside
the railway domain.

2.1 The Simplex Architecture

The Simplex Architecture is a system design pattern to ensure the safety of a system
during its runtime. Since there are a number of variations on this pattern described in the
literature, this section provides an overview of the terminology and common structures
in different simplex implementations.

2.1.1 The Basic Simplex Architecture

The most common version of the Simplex Architecture consists of two controller modules
and a decision logic module as shown in Figure 2.1.

Trustworthy Subsystem

Unreliable Subsystem

Decision Module Environment

Figure 2.1: The Basic Simplex Architecture with two controllers.

Depending on the specific implementation, different names for these modules are
common. Since the controllers in this thesis are fully functional individual units, we refer
to them as subsystems. For their roles, this thesis adopts the terminology of a trustworthy
and unreliable system as used by Crenshaw et.al. [11]. In other implementations, the

9

2 Background and Related Work

roles are described with the terms high assurance and high performance [38] or baseline and
experimental [37].

The Simplex architecture is a means of increasing the dependability of a system by
extending the dependability properties of the trustworthy subsystem to the unreliable
subsystem. At runtime, both subsystem work in parallel. The decision module receives
the outputs of both systems and compares them. If the outputs differ or the actions of the
unreliable subsystem would put the system as a whole into an unsafe or unrecoverable
state, the decision module gives control to the trustworthy subsystem.

This makes it possible to use a system whose dependability is uncertain in scenarios
where a high dependability is necessary. For example, machine learning approaches offer
performance improvements in many domains, but it is difficult to prove their depend-
ability. By correctly recognizing when the actions of a machine learning implementation
would violate the system’s dependability constraints and switching to a conventional
implementation, the dependability properties of the conventional implementation can be
extended to the machine learning implementation. Similarly, the unreliable subsystem
could run on commercial off the shelf (COTS) hardware for performance reasons. The
decreased reliability of COTS hardware could be compensated by a more reliable fallback
implementation.

2.1.2 Decision Module

The following subsection is quoted verbatim from [1] because it was written by the same
author:

As the decision module evaluates the state of the system and controls the output of
the overall system, it is a crucial component. It uses a switching rule to decide when to
transfer control from the untrusted controller to the trusted controller so that the system
never violates its operation constraints. These constraints refer to the physical or safety
limitations of the system, e.g. a speed limit that may not be exceeded. However, the
decision module has to switch to the trusted controller before the system leaves its safe
state. For this purpose, a recovery region is defined.

Safety and Recovery Region Figure 2.2 shows the process of deriving a safety and recov-
ery region. This process begins with a system description, which can take different forms.
A system with linear dynamics can be described by a set of linear matrix inequalities.
Systems with discrete states can be described by a state machine. However, many systems
are described by a combination of discrete and continuous variables called hybrid systems.
Based on the system description, the safety region is usually defined manually (e.g. based
on domain expert knowledge). The safety region is then used to derive a recovery region
using one of the following methods:

• Lyapunov Functions [38]

• Reachability Analysis [41]

• Predefined Values [36]

• Barrier Certificates [41] [13]

10

2.1 The Simplex Architecture

System Description

Linear Matrix InequalitiesState Machine Hybrid System

Discrete Abstraction

Safety Region

Recovery Region

Constraints,
Inequalities

Barrier CertificatesLyapunov Function Reachability Analysis

Figure 2.2: Different Approaches for the Decision Module

Lyapunov Functions The original simplex architecture used Lyapunov functions, a con-
cept that originated in stability theory. They can be used to show the stability of dynamic
systems. In the context of the simplex architecture, this relates to the recovery region for
a system with linear dynamics. Using a Lyapunov function, the recovery region can be
computed from a set of linear matrix inequalities, which is computationally inexpensive.
However, the requirement for the system to have linear dynamics reduces the applica-
bility of this approach. A special case of using Lyapunov functions is presented in the
NetSimplex architecture (NetS) [42]. This Simplex variant includes network delays in the
parameters used to determine the recovery region.

Reachability Analysis Reachability analysis provides a more generalized approach. Here,
the set of possible states is enumerated, and the recovery region is computed by checking
how quickly an unsafe state can be reached from each state. The decision module switches
to the trusted controller if an unsafe state is reachable within a predefined number of
state transitions. The reachability algorithm used determines the shape of the computed
recovery region. Reachability analysis requires no constraints on the system’s dynamics,
making it broadly applicable. However, for a large state space, it can quickly become
computationally expensive. The requirement to enumerate the system’s possible states
means that reachability analysis is only applicable to discrete systems. However, there are
methods to create a discrete model of a continuous system. One such method is discrete
abstraction as presented by [5], which discretizes the passing of time in a hybrid system.

Predefined Values The most common approach to defining a recovery region is using
predefined values. Here, the constraints of the recovery region are manually defined, e.g.

11

2 Background and Related Work

based on previous experience. Predefined values are the least computationally expensive
way to define a recovery region and easily incorporate human expertise. However, they
also rely on this expertise and may define a more conservative recovery region than other
approaches. An example of this approach can be found in the Component-based Simplex
Architecture (CBS) [36]. In this variation, the switching conditions are defined in the
form of contracts that the untrusted controller must adhere to. Further, all components
of the system are Simplex-based and the active controller in one component may be part
of another component’s contract. This means that a switch in one component may cause
dependent components to switch as well.

Barrier Certificates The more recent Barrier Certificate-based Simplex architecture uses
barrier certificates to compute the recovery region. These can be used as an alternative
to discrete abstraction when dealing with hybrid systems. A barrier certificate is a set of
barrier functions, one of which is defined for each possible discrete state of the system
(here called the system’s mode). A barrier function takes a continuous state of the system
as its input and maps it to a real number. The barrier functions are defined so that a
state is mapped to a value less than or equal to zero if and only if no unsafe states are
reachable. Thus, the zero-level set of a barrier function (i.e. all states whose value is less
than or equal to zero) forms the recovery region in a mode.

Switching Rule The switching rule uses the safety and recovery regions to determine if
the system should switch from the untrusted to the trusted controller. Depending on the
type of system, the switching rule may be checked at every state transition (for discrete
systems) or at a regular time interval (for continuous systems). When the untrusted
controller proposes an action, the switching rule checks if this action would put the
system into an unsafe state. It may also use a limited reachability analysis to check if the
system’s trajectory (e.g. if the state depends on external influences not controlled by the
system) may lead to an unsafe state.

Many Simplex implementations only support switching from the untrusted to the
trusted controller, but there are some implementations of reverse switching where the
decision module may give back control to the untrusted controller after the system has
returned to a safe state.

2.1.3 Architecture Variants

Over the years, different variants of the Simplex architecture have been developed, often
with specific kinds of applications in mind. Based on the classification of Simplex vari-
ants described in [1], this subsection discusses their applicability to the train detection
system (TDS) use case. Only variants that are directly derived from the original Sim-
plex Architecture are discussed here, since their derived variants exhibit the same basic
characteristics.

Original Simplex The original Simplex architecture has already been described in subsec-
tion 2.1.1. It can handle different kinds of unreliable controllers and can be adapted
to different use cases by modifying the decision logic.

12

2.2 Other Dependability Patterns

Multiple Controller This variant is similar to the original Simplex Architecture, but em-
ploys multiple unreliable subsystems. Since the simplicity of the implementation is
an important criterion in this thesis, Multiple Controller Simplex is not applicable
here.

Nested Simplex This variant uses another Simplex system as its trustworthy subsystem.
Since there exists no Simplex-based TDS, it is not applicable to this thesis.

System-level Simplex While other Simplex variants can only tolerate faults on the appli-
cation level, the System-level Simplex Architecture can also tolerate hardware faults.
Since the implementation work of this thesis includes no direct interaction with
hardware, this additional fault tolerance is not necessary.

L1 Simplex This variant uses elements of control theory to detect and mitigate physical
failures as well as software failures. It can not only switch to the trustworthy
subsystem if the unreliable subsystem would bring the system into an unsafe state,
but also if the uncertainty in the system exceeds a predetermined threshold.

Neural Simplex Since the unreliable subsystem in this thesis does not use machine learn-
ing, this architecture variant is not applicable.

Distributed Simplex Since the individual object controller implemented in this thesis is
not a distributed system, this variant is not applicable.

As this comparison shows, most Simplex variants are designed for use cases with
different characteristics than a TDS. This leaves the Original Simplex and L1 Simplex as
candidates. While the L1 Simplex Architecture can provide additional guarantees against
physical failures, it requires additional complexity compared to the Original Simplex
Architecture. Since the strength of the Simplex architecture for the purpose of certification
is its simplicity, we only consider the original Simplex architecture from here on.

2.2 Other Dependability Patterns

There exist a variety of patterns that increase the dependability of a system. As described
by Avizienis et al. [3], there exist different dependability attributes which may be ensured
or even traded off in different ways. Although all patterns described in this section
are intended to raise the dependability of a system, they affect different dependability
attributes. In our discussion of these patterns, we focus on the types of faults they can
and cannot handle.

2.2.1 Triple Modular Redundancy

A common pattern to protect against random failures is Triple Modular Redundancy
(TMR) [15].

As Figure 2.3 shows, it is superficially similar to the Simplex architecture. The complete
system is composed of three replicas and a switching component. As the term replica
implies, these are not different implementations, but multiple instances of the same system.
The replicas operate in parallel and the switch compares their outputs. If two or more of
the replicas send the same output, the switch forwards that output to the environment.

13

2 Background and Related Work

Replica 1

Replica 2

Replica 3

Switch

TMR System

Environment

Figure 2.3: Triple Modular Redundancy architecture.

Since there are an uneven number of replicas, TMR can detect failures in up to two
replicas and even correct failures in a single replica. It also requires only a small amount
of additional implementation effort because all replicas reuse the same implementation.

However, TMR can only find and correct random failures. If there is a logical fault in the
replicas, it will affect all of them equally and therefore be undetectable to the switch. Also,
all replicas are treated as equally authoritative. For example, if all three gave different
outputs, the switch would have no way to determine which output is correct. Even more
severe errors could happen if two replicas experience the same type of fault, leading to
their outputs overriding the correct one.

2.2.2 N-Version Programming

Implementation 1

Implementation 2

Implementation 3

Switch

N-Version Programming-based System

Environment

Figure 2.4: N-version programming architecture.

This pattern was introduced by Chen and Avizienis [10] and is similar to both TMR and
the Simplex architecture. As shown in Figure 2.4, there are multiple subsystems that are
each implemented independently, similarly to the Simplex architecture. However, none of
these is treated as authoritative. Instead, similarly to TMR, a voting mechanism is used

14

2.2 Other Dependability Patterns

to handle disagreements between subsystems. Depending on the number of subsystems,
n-version programming can detect or tolerate subsystem failures.

A system implemented using n-version programming can tolerate the same faults as
a system implemented using TMR. Further, it can tolerate systemic faults in subsys-
tems, so long as they are not common between the subsystems. Beyond the additional
computational also cost incurred by TMR, n-version programming requires additional
implementation effort. In order to avoid common mode failures, the subsystems should
be implemented in different ways from each other. For example, this could mean imple-
menting them in different programming languages or using different algorithms for the
same goal.

2.2.3 Encoded Execution

Another pattern to detect runtime errors in a system is encoded execution, first presented
in [20]. This approach uses error correction codes to determine the correctness of the
system at critical points during runtime. These codes can be separate or nonseparate from
the value. [2]. If a value’s error code is invalid, an error (e.g. a bit flip in main memory)
must have occurred and the system has to handle it.

const A: i64 = 5;

fn mul(lhs: i64, rhs: i64) -> i64 {
(lhs * rhs) / A

}

fn encode(value: i32) -> i64 {
value as i64 * A

}

fn decode(value: i64) -> Result<i32, String> {
if value % A == 0 {

Ok((value / A) as i32)
} else {

Err(format!("{value} is not divisible by {A}, remainder: ", value % A))
}

}

fn main() {
let x: i32 = 2;
let y: i32 = 7;
let z = mul(encode(x), encode(y));
println!("{:?}", decode(z));

}

Listing 1: Example implementation of AN encoding for multiplication in Rust

15

2 Background and Related Work

An example of a nonseparate error correction code is AN encoding. [19] This encoding
only works on integer values, but can be applied to aggregate values by e.g. encoding each
member of a structure individually. Here, values are multiplied with an integer constant
A. Ideally, A should be a large prime. An encoded value xc is valid if it is divisible by A.
Instructions operating on these values must be aware of the encoding.

Listing 1 shows an example implementation of multiplication using AN encoding. For
two encoded values xc and yc, naive multiplication would result in

xc · yc = A · x · A · y = A2 · x · y

In order to correct this value, the result has to be divided by A. Other arithmetic
operations have to be modified similarly. Note also that the encoded values use a larger
datatype to ensure the encoding does not cause an overflow.

Encoded execution can be implemented with different error correction codes. More
complex codes can make it more likely to detect faults, but add more runtime overhead
as well. Encoded execution can also be combined with other safety patterns. For example,
multiple AN-encoded instances with different values for A can be used as a form of
n-version programming. [39].

2.3 Related Work

Various approaches for the development of safety-critical systems have been developed
over the years. In relation to this thesis, there are three categories of related work:

1. Safety-critical systems in the railway domain

2. Applications of the Simplex architecture

3. Similar applications outside the railway domain and Simplex architecture

Since our use case concerns the railway domain, we first consider established methods
for ensuring the safety of railway applications. While formal methods have commonly
been used to prove the safety of railway applications, some approaches to reduce the
burden of certification have been developed in recent years.

While we are not aware of any railway applications using the Simplex architecture, the
Simplex architecture has been successfully demonstrated in other transportation-related
use cases. While most of these use cases apply the Simplex architecture to the vehicle
instead of the infrastructure, they still share the realtime constraints of our use case.

The final category of related work concerns approaches to redundant sensor or bus
usage that are neither part of the railway domain nor a Simplex-based application. Since
very few Simplex-based applications focus on the dependability of sensors, the works in
this category fill a niche relevant to our use case.

2.3.1 Railway Safety

Most railway applications rely on formal methods to ensure safety. These methods work
by specifying systems formally, instead of using natural language. The formal model can
then be used to check that the system fulfills necessary constraints. A possible constraint

16

2.3 Related Work

could be “A train may not exceed a speed of 300km/h”. An example of the use of
formal method is given by Shaoying et al. [27, 26] who demonstrate the use of the formal
language SOFL to develop a railway crossing controller. The controller is specified in the
form of a state machine whose safety properties can be statically checked. Iliasov et al.
[24] use the SafeCap toolkit to show the safety of an entire interlocking. SafeCap is a
modelling platform that includes automated theorem solvers which can be used to prove
that a model fulfills safety constraints.

System and Safety
Requirements

Software
Requirements

Software Architecture
and Design

Component
Design

Component
Implementation

Component
Testing

Integration
Testing

Software
Validation

Software
Maintenance

Figure 2.5: The V Model for software development as specified in DIN EN 50128 [14].

The safety characteristics of a system can be summarized using the safety integrity
level (SIL). Non-safety components are referred to as SIL0 whereas systems with the
highest safety requirements are SIL4. An established way of certifying a safety-critical
railway application in Germany is to show that its development process is compliant
with the guidelines in DIN EN 50128 [14]. These guidelines include the use of the V
model. As shown in Figure 2.5, the V model describes a development process starting
with a requirement analysis and system specification. The specification starts on the more
abstract system level and then moves to the more granular component level. After the
design is finished, the components are implemented. The system is then extensively tested
based on the specifications developed earlier in the process. The V model also considers
the ongoing maintenance part of the development process.

However, other approaches are being explored as well. For example, Bilbao et al. [6]
describe a system that uses a multicore CPU for redundancy and falls back on degraded
modes to keep operating in case of failure. While both are necessary to create a safe system,

17

2 Background and Related Work

this work focuses more strongly on the system architecture rather than the development
process.

Other work focuses on the ability to update railway applications. Gala et al. [21] discuss
the use of virtualization to make applications independent of the hardware they were
originally deployed on. Since the certification process considers hardware and software of
a system together, this approach has the potential to greatly reduce the effort required for
certification. Another approach to updates is discussed by Moumouris and Zehnder [32].
Many systems combine safety-critical and non-critical components. If these components
are isolated from each other, updates to non-critical components should not require a
recertification of the system. The authors present a proof of concept using a segregating
operating system to achieve this degree of isolation.

2.3.2 Other Simplex Applications

The Simplex Architecture is a well-established pattern for use in safety-critical applications
in certain domains as illustrated by [1]. While there are no publications describing the
use of the Simplex Architecture for railway applications, a variety of applications in other
transportation domains exist.

One use case of the Simplex Architecture in the automotive domain is described by Bak
et. al. in [5]. The paper presents the method of discrete abstraction which we elaborate
on in subsection 2.1.2. It uses the prevention of offroad vehicle rollover as an example use
case of this method. The hybrid model of the vehicle (which includes variables such as
its speed, the ground angle and the steering angle) is discretized to find thresholds for
when the safety controller (which reduces vehicle’s speed and steering angle) should take
control. This application uses the System-level Simplex Architecture [4] by implementing
its decision logic in a Field Programmable Gate Array.

Another automotive use case is discussed by Feth et al. in [18]. The authors describe a
platooning algorithm which uses the Simplex Architecture to ensure safety by avoiding
collisions.

Apart from the automotive domain, the Simplex architecture has been widely applied in
aviation. Nagarajan et al. [33] present an application that uses a Simplex-based approach
as a geofence for autonomous aircraft. Similarly to our use case, an unsafe action from the
untrusted controller, such as leaving the geofenced area, causes the system to gracefully
cease operating by terminating the flight. The Simplex architecture has also been used in
aviation to implement collision avoidance. Mehmood et al. describe one such use case in
[31]. They use the black-box Simplex architecture, a variant of the Simplex architecture in
which the trustworthy controller is unverified, to avoid collisions between F16 airplanes.
Some of the same authors also used the distributed Simplex architecture for a collision
avoidance use case [30]. In a distributed Simplex system, multiple actors each use the
Simplex architecture and can take each other’s states into account when deciding whether
to switch.

18

2.3 Related Work

2.3.3 Other Non-Simplex Applications

Axle counting object controllers have the characteristics of sensors. While this is un-
sual for Simplex applications, there exist methods that use redundancy to improve the
dependability of sensors.

Granig et al. [22] developed a concept to account for dependability requirements in
IoT devices. They propose a model for sensors where a second sensor is either used for
calculating the mean, assuming small deviations in both, or for diagnostics. The latter
approach is similar to a Simplex-based system. However, a significant difference to our
use case is the continuous value space of their output, whereas ours is discrete.

Redundancy schemes are also used to increase the dependability of CAN bus commu-
nication. Xiang-Dong et al. [40] describe a method using redundant CAN bus connections
with an FPGA-based controller to achieve better performance over software-based re-
dundancy. Unlike a Simplex-based approach, the connections are treated as equally
trustworthy.

19

3 Concept
Based on the research question and related work, this chapter describes the requirements
and design of the Simplex-based object controller developed in this thesis. Since in
practice the development of an object controller is safety critical and, thus, must follow
the design process specified in EN 50128 [14], we base the development of our system
on this standard while omitting all steps infeasible or unnecessary for a proof of concept.
Consequently, we specify the applicable requirements in Section 3.2. The evaluation of
possible implementations for each requirement and the design decision can be found in
subsection 3.3.1 - subsection 3.3.4. Finally, based on these considerations and requirements,
we conclude with the final architecture of our proof of concept (Section 3.4).

3.1 Use Case

As outlined in Chapter 1, the increasing digitization of the railway industry provides
new chances and challenges. Unlike conventional railway infrastructure components,
digital components require regular updates and have shorter individual lifecycles. All
railway infrastructure components must be certified in order to use them in the field. The
certification process is intended to ensure the safety and reliability of a component. While
the approach of certifying a component once and using it as-is for up to 40 years works
well for non-digital components, it is fundamentally incompatible with the requirement
for updates and shorter lifetimes. As the certification process works now, an update
requires a full recertification of the component.

Since the author of this thesis does not have extensive knowledge of the certification
process, this thesis focuses on developing a system whose trust is not affected by updates,
rather than one which would not require recertification after an update.

As a specific use case, this thesis examines the safety of an axle counting object controller.
Within EULYNX, it fulfills the role of a Train Detection System (TDS). An axle counter
monitors the occupancy status of one or more Track Vacancy Proving Sections (TVPS).

Train Detection Points
Axle Counting

Object Controller
Interlocking

Figure 3.1: Role of the axle counter in the railway infrastructure.

The axle counter receives axle counting events from its connected train detection points
(TDPs). This connection uses a proprietary, manufacturer-dependent protocol. When
the occupancy status of a monitored TVPS changes, the axle counter sends a message
to the interlocking. Since we consider a EULYNX system in this thesis, the axle counter
and interlocking communicate using the Standard Communication Interface - Train Detection
System (SCI-TDS). These connections are shown in Figure 3.1.

21

3 Concept

The interlocking is responsible for ensuring the safety of routes and communicating
with trackside elements. As such, it communicates with the system developed in this
thesis. The interlocking is provided by the EULYNX Live Lab.

3.2 Requirements

In order to implement the safe TDS outlined above, we introduce the following require-
ments for the system developed in this thesis:

R1 EULYNX Compatibility The system developed in this thesis shall communicate using
EULYNX interfaces. It must be compatible with the interlocking used in the EUL-
YNX Live Lab.

One of the effects of the increased digitization in the railway industry is the move
towards standardization. Standardized interfaces as specified by EULYNX enable the
combination of components from different manufacturers and decouple the lifecycles of
components. In order to test the system developed in this thesis in a EULYNX environ-
ment, it must implement the relevant EULYNX interfaces. Since the system is a proof
of concept, it only supports the SCI-TDS protocol and does not support maintenance
interfaces which would be part of a full object controller.

R2 Trust in the System The system developed in this thesis shall use an existing, trusted
system as the source of its trust.

The development of an object controller from the ground up is out of scope for this
thesis. Instead, it explores methods to increase the dependability of an existing object
controller.

R3 Error Handling The system shall tolerate faults that may cause safety violations.

Safety is the most important dependability goal in the railway context. Even if the
system can detect errors by comparing outputs with a known safe implementation, it may
only fail in well-defined ways that do not compromise its safety.

3.3 System Design

In this section, we discuss the design decisions made to ensure the implementation fulfills
the requirements defined above.

3.3.1 Fault Model

To achieve dependability, we introduce a fault model that is later used to verify the
dependability of the system. The fault model is based on the work of Avizienis et al.
[3] who define five dependability attributes: availability, reliability, safety, integrity and
maintainability as presented in Table 3.1.

Out of these attribute, safety is the most important since a safety violation may result in
human or property damage. The TDS can only influence the state of the wider signalling

22

3.3 System Design

Attribute Definition Meaning in TDS use case
Availability readiness for correct service TVPS are correctly reported as

vacant
Reliability continuity of correct service The TDS remains available and

safe
Safety absence of catastrophic conse-

quences on the user(s) and the
environment

TVPS are never incorrectly re-
ported as vacant

Integrity absence of improper system alter-
ations

Telegrams are forwarded cor-
rectly

Maintainability ability to undergo modifications,
and repairs

Subsystems can be exchanged or
upgraded without additional de-
velopment effort

Table 3.1: Dependability attributes as defined in [3] (definitions quoted from p.5) and interpretation
in the TDS context

system through the status reports of its monitored TVPS. From the perspective of the
interlocking, a Track Vacancy Proving Section (TVPS) monitored by the Train Detection
System (TDS) can have three states: Vacant, Occupied or Disturbed. If the reported
and actual states are the same, no safety violation can occur. However, consider the
consequences of a mismatch between reported and actual states. Each cell in Table 3.2
shows a possible combination of reported and actual states. The first line shows the effect
on the availability of the TVPS, the second the effect on its integrity. A TVPS is considered
available if it is reported as vacant. If a safety violation is possible, it is listed in a third
line. The colors indicate how severely a mismatch impacts the TVPS’ dependability.

Reported
Actual

Vacant Occupied Disturbed

Vacant Available
Correct

Available
Incorrect
Safety Violation

Available
Incorrect
Safety Violation

Occupied Unavailable
Incorrect

Unavailable
Correct

Unavailable
Wrong Reason

Disturbed Unavailable
Incorrect

Unavailable
Wrong Reason

Unavailable
Correct

Table 3.2: Consequences of mismatch between reported and actual TVPS states (usability and
correctness)

As the table shows, incorrectly reporting a TVPS as vacant carries the risk of a safety
violation. If the TVPS is occupied, allowing another train to enter it may cause a collision.
If it is disturbed, the TVPS may be unavailable and a train entering it might e.g. derail.

Reporting a TVPS as occupied should not lead to safety violations. If it is actually
vacant, the report is incorrect, but an unavailable TVPS can cause no safety violations. The

23

3 Concept

same applies to a disturbed TVPS since in both states the TVPS may not be entered by a
train.

Since a disturbed TVPS is also unavailable, the same conclusion applies to falsely
reporting a TVPS as disturbed.

Therefore, the system should prioritise the detection of errors as follows:

Detect incorrectly available TVPS These cases are the only ones that can result in a safety
violation. Therefore detecting them has the highest priority.

Detect incorrectly unavailable TVPS As discussed, an unavailable TVPS cannot cause
safety violations. However, it unnecessarily reduces availability and should be
avoided if possible.

Detect unavailable TVPS for wrong reasons While these cases are incorrect, they do not
violate the safety or availability of the system. They may, however, indicate the
presence of other faults in the TDS. Therefore, detecting them is helpful, but not
necessary.

Since we do not assume that the encapsulated object controller operates correctly, the
system must tolerate failures of the object controller that compromise its safety or avail-
ability. In [12], Flavin Cristian categorizes faults into crash, omission, timing, computation
and byzantine faults. Detecting these different categories requires varying amounts of
complexity and additional information.

Crash Fault If the object controller becomes unavailable, the system must be able to detect
this and report the TVPS as unavailable.

Omission Fault, Timing Fault, Computation Fault, Byzantine Fault With only one TDS these
faults are not detectable because the safety layer has no reference to detect missing
or incorrect messages. However, these faults must be handled as they can cause the
critical state mismatches discussed above.

3.3.2 Comparison of Safety Patterns

In order to fulfill requirement R2, the system makes use of a safety pattern as discussed
in Chapter 2. This section focuses on detection of errors. For more information on error
handling refer to subsection 3.3.3. The selected safety pattern must be able to to detect
the following types of errors:

Crashes stop the object controller from operating at all. They may be caused by imple-
mentation faults (e.g. improper memory management resulting in a segmentation
fault) or outside faults (such as a faulty power supply).

Correctness Errors These errors do not stop the object controller from operating, but
cause it to give incorrect outputs as discussed in subsection 3.3.1.

These requirements already exclude encoded execution as a viable option. Assuming
the object controller is provided as a specialized computer with the relevant software
preinstalled and configured, or even just as a binary executable, encoded execution cannot
be applied to it. Even if the object controller’s source code is accessible and compiler

24

3.3 System Design

tooling to inject encoded execution is available, encoded execution can only detect a
subset of relevant failures. Specifically, encoded execution is able to detect random
hardware failures. Encoded Execution is unsuitable for detecting logical errors in the
object controller implementation. However, it can be combined with other safety patterns
to increase their robustness against random failures.

Another option discussed is triple modular redundancy (TMR), a pattern running three
identical controllers in parallel to provide two-out-of-three redundancy. This pattern can
detect both crashes and correctness errors if they occur randomly. If an error is random,
it should only affect one replica. Since TMR compares the outputs of all replicas, it can
detect random errors in one or two replicas. However, if an error is systematic, it becomes
invisible to TMR. Systematic errors affect all replicas equally which means the voting
component detects no discrepancy between outputs. Therefore, TMR can detect some
correctness errors, but not all.

N-version programming follows a similar approach to TMR, but does not use identical
replicas. This allows it to detect systematic errors in any of its versions.

The final option is the Simplex Architecture. As discussed in Chapter 2, it shares some
characteristics with N-version programming. It makes use of a trustworthy system to fall
back on in case of an error. When the goal is only to detect an error (i.e. a discrepancy
between subsystems), this pattern is as powerful as N-version programming.

Pattern Goal DC DCE Initial Develop-
ment Effort

Upgrade Effort

Encoded Execu-
tion

Detect Hard-
ware Faults

 # Low Medium

Triple Modular
Redundancy

Protect against
failures in one
replica

 G# Low Medium

N-Version Pro-
gramming

Protect against
logical software
faults

 High High

Simplex Archi-
tecture

Reuse trust in
existing system

 High Low

Table 3.3: Comparison of the different safety patterns. DC is short for “Detect Crashes”, DCE is
short for “Detect Correctness Errors”. means the pattern can detect all errors of the category,
G# means it can detect some and # means it can detect none.

Apart from their power to detect different types of errors, the different patterns differ
in development and upgrade effort as shown in Table 3.3. Encoded Execution and TMR
are the easiest to integrate into a system. Encoded Execution only requires the use of an
encoded compiler or runtime environment. TMR requires the development of a voting
component, but the replicas all reuse the same code. N-version programming and the
Simplex Architecture both require a higher development effort since they require multiple
full implementations of the same system.

Upgrade effort refers to the effort required to verify the safety of the system after
an update to the encapsulated object controller. For Encoded Execution and TMR this

25

3 Concept

effort is not affected by the safety pattern. On the other hand, N-version programming
requires high additional effort if multiple implementations have to be updated at the same
time. If only the unreliable subsystem is updated, the Simplex Architecture requires the
lowest upgrade effort. Since the safety of the system does not depend on the unreliable
subsystem, the safety of the entire system does not have to be verified again.

Due to their limited ability to detect correctness errors, Encoded Execution and TMR
are not appropriate for the TDS use case. While N-version programming and the Simplex
Architecture can detect the same categories of errors, the Simplex Architecture results in
lower costs for system upgrades. Since the trustworthy subsystem in this thesis is already
certified and never upgraded (cf. Section 3.4), the Simplex Architecture provides an
advantage over N-version programming. Therefore, we opt for the Simplex Architecture
as our safety pattern.

However, it should be noted that while all of the patterns discussed aim to increase
the safety of the system they are applied to, they protect against different types of safety
violations. Not all of the patterns can detect correctness errors, but multiple patterns
can be combined to increase the overall safety and reliability of the system. For example,
the system developed in this thesis uses the Simplex Architecture, but the trustworthy
subsystem independently uses a TMR setup.

3.3.3 Error Handling Strategies

If a discrepancy is detected between the output of the trustworthy and unreliable sub-
systems, there are different possible reactions. In a conventional Simplex system, the
decision module would at this point switch to forwarding the outputs of the trustworthy
subsystem. However, the safety argumentation in this use case hinges on the simplicity of
the decision logic. If the decision module has to translate between EULYNX and NeuPro
messages, a simpler system than a Simplex solution could be implemented that makes
existing NeuPro object controllers EULYNX-compatible by translating telegrams between
it and the interlocking.

1. Report TVPS as Disturbed, Unable to be forced to clear

2. Close Process Data Interface (PDI) Connection

3. Close RaSTA Connection

In Eu.TDS.6860, the SCI-TDS specification defines how the TDS should act in case of a
critical failure of a TVPS. In case of a critical failure, the TDS reports the affected TVPS
as disturbed and unable to be forced to clear. While this solution is encourages by the
EULYNX standard, it requires the decision module to construct EULYNX messages. If
the EULYNX standard is at any point updated, the decision module would have to be
updated as well. It would therefore add significant complexity to the decision module.

The second option is to close the PDI interface, i.e. the connection underlying the SCI
communication. If a field element detects an issue and can no longer maintain the SCI
connection to the interlocking, it can send the Msg_PDI_Not_Available message to the
interlocking (Eu.Gen-SCI.452) to close the connection. While this solution also requires
sending an SCI message, it closes the connection meaning that no messages from the
interlocking need to be interpreted. Further, the Msg_PDI_Not_Available message has

26

3.3 System Design

no payload which makes it easy to construct without implementing the entire SCI-TDS
protocol.

The last option is to close the object controller’s RaSTA connection. The SCI connection
exists on top of a RaSTA connection. By disconnecting on the RaSTA layer, the connection
to the interlocking can be severed. Since the interlocking could no longer know the state
of the TDS, it would have to assume that its TVPS are no longer usable. This solution has
the advantage of requiring no SCI communication in the decision module.

These different strategies are all implemented in the Simplex-based object controller
and compared in Section 4.4.

3.3.4 Comparison of NeuPro and EULYNX

Since EULYNX is partially based on NeuPro, the interfaces defined by both standards are
very similar. They share interface names, message types and general telegram structure.

(a) NeuPro

Byte(s) Contents
00 Protocol Type
01 – 02 Message Type
03 – 22 Sender Identifier
23 – 42 Receiver Identifier
43 – 127 Payload (up to 85 bytes)

(b) EULYNX

Byte(s) Contents
00 Protocol Type
01 – 02 Message Type
03 – 22 Sender Identifier
23 – 42 Receiver Identifier
43 – 1023 Payload (up to 981 bytes)

Table 3.4: Structure of a NeuPro (left) and EULYNX telegram (right)

As Table 3.4 shows, the headers of both protocols are identical, the only difference being
that EULYNX supports significantly larger payloads. This is the case because the EULYNX
protocols were more recently developed than the NeuPro protocols. SCI-TDS does not
use this additional payload capacity. As mentioned, protocol types and message types are
in the case of SCI-TDS also identical between NeuPro and EULYNX.

(a) NeuPro

Byte(s) Contents
00 Occupancy Status
01 Ability to be forced to clear
02 – 03 Filling Level

(b) EULYNX

Byte(s) Contents
00 Occupancy Status
01 Ability to be forced to clear
02 – 03 Filling Level
04 POM Status
05 Disturbance Status
06 Change Trigger

Table 3.5: Comparison of NeuPro and EULYNX payloads for the TVPS Occupancy Status telegram

While the headers are identical, the differences in the paylod can be classified into
additional information and changed semantics.

27

3 Concept

Additional Information For many telegrams, the EULYNX specification contains addi-
tional information not present in the NeuPro version. An example of this can be
seen in the TVPS Occupancy Status telegram. The payloads are shown in Table 3.5.
The NeuPro version contains three fields, whereas the EULYNX version contains
six. The first three are identical, but the additional ones contain diagnostic informa-
tion. The EULYNX telegram includes information on the power status of the TVPS,
whether it is disturbed and what caused the TVPS to send the telegram.

Changed Semantics Beyond simply adding information, EULYNX also makes changes to
how some fields are interpreted. In the case of the TVPS Occupancy Status, this
includes the ability to be forced to clear. In both versions, this field is a boolean
value represented using one byte of data. However, in NeuPro, admissible values
are 0 for false and 1 for true, whereas EULYNX uses 1 to mean false and 2 to mean
true. It seems likely that these values were chosen to avoid a scenario in which
an empty telegram could be interpreted as a correct value, although the correct
transmission should already be handled by checksums on the RaSTA layer.

:Subsystem - Train
Detection System

Subsystem -
Electronic Interlocking

Message Initialisation Complete

Command PDI Version Check

Message PDI Version Check

Command Initialisation Request

Message Start Initialisation

for each
TVPS Message TVPS Occupancy Status

(Disturbed, Unable to be forced to clear)

Figure 3.2: TDS Initialisation Message Flow as specified in EULYNX

28

3.4 Architecture

In the TDS subsystem, the message flow is identical between NeuPro and EULYNX (an
example for system initialization is shown in Figure 3.2). This allows the decision module
to compare messages without needing to understand their exact contents except for the
small number of message types considered safety-critical.

3.4 Architecture

As described above, the system developed in this thesis uses the Simplex Architecture
to ensure the safety of an object controller. This means it requires an unreliable and a
trustworthy object controller to use as subsystems. In order to test the system, it also
requires a connection to an interlocking. This section gives an overview of the components
used, their interfaces and how they are used in the Simplex-based Object Controller.

Trustworthy Subsystem

Unreliable Subsystem

Decision Module Interlocking
Simulated

Train Detection Point(s)

Simplex-based Object Controller

Figure 3.3: The Architecture of the entire system including the data source (Train Detection Point)
and communication partner (Interlocking). Solid lines represent EULYNX SCI-TDS connections.
Dashed lines represent NeuPro SCI-TDS connections. Dotted lines represent the EULYNX Live
Lab TDP Simulator protocol.

An overview of the system architecture is given in Figure 3.3. Components developed
as part of this thesis are highlighted in blue. The environment to develop and test the
Simplex-based object controller was provided by the EULYNX Live Lab.1 Consequently,
the focus was put on the implementation of the decision module and the composition of
the existing components.

3.4.1 Communication

As shown in Figure 3.3, the Simplex-based Object Controller communicates outside the
system using two interfaces: The EULYNX Live Lab TDP Simulator protocol and EULYNX
SCI-TDS. The first of these is not standardized, but a custom protocol developed for the
EULYNX Live Lab. It can be used to increase or decrease the axle count in a TVPS.

SCI-TDS is used for the communication between the decision module and the interlock-
ing.

Out of the messages listed in Table 3.6, messages sent by the interlocking are forwarded
to the subsystems unchanged. Only messages sent by the axle counter, i.e. the subsystems,
need to be checked by the decision module. Since the EULYNX axle counting simulator

1https://lab.eulynx.live/

29

https://lab.eulynx.live/

3 Concept

EULYNX NeuPro Type Description Sender Used
PDI-Version
Check, Initialisa-
tion Request

BTP-
Versionsabgleich,
Aufrüstan-
forderung

C Commands in
the initialisation
sequence

IXL

Close PDI, Release
PDI for Mainte-
nance

Not applicable C Gracefully close a
PDI connection

IXL #

Force Clear AZG C Forcibly set the
TVPS’ status to va-
cant

IXL

Update Filling
Level

Achszähl-
füllstand-
Aktualisierung

C Request the cur-
rent state of a
TVPS

IXL #

Disable Restric-
tion to Force Clear

AZGH C Allow a TVPS’ sta-
tus to be forced to
clear

IXL

Cancel Not applicable C Cancel a Force
Clear command

IXL #

PDI-Version
Check, Start
Initialisation,
Status Report
Completed, Initial-
isation Completed

BTP-
Versionsabgleich,
Aufrüstbeginn,
Aufrüstende

M Messages in the
initialisation se-
quence

ACM

TVPS Occupancy
Status

GFM-A-
Belegungs-
zustand

M Reports a change
of status in a TVPS

ACM

TVPS FC-P failed,
TVPS FC-P-A
failed

Not applicable M Report an unsuc-
cesful attempt to
force clear

ACM #

Additional Infor-
mation

Not applicable M Reports addi-
tional information
related to TVPS
occupancy status
changes

ACM #

TDP Status ZDP-
Befahrungszustand

M Reports status
changes of a TDP

ACM #

Table 3.6: Overview of EULYNX commands and messages. If a NeuPro equivalent exists, it is listed
in the NeuPro column. Type shows if the telegram type is a message (M) or command (C). Sender
shows if the telegram is sent by the interlocking (IXL) or axle counter (ACM). Used shows if
the components in our architecture send the message, indicating the message can occur, #
indicating it is not used.

30

3.4 Architecture

only emits a subset of the supported messages, this reduces the number of messages
required to check even further.

3.4.2 Unreliable Subsystem

The unreliable system is an axle counting simulator2 that was developed as part of the
EULYNX Live distributed laboratory infrastructure. It uses a EULYNX interface for com-
munication with an interlocking, but only implements part of the specification. In the
Simplex-based object controller, it communicates with the interlocking through the deci-
sion module using SCI-TDS. Since both the simulator and the interlocking communicate
via EULYNX SCI-TDS, telegrams are forwarded by the decision module without trans-
lating them. The simulator is not connected to actual TDPs, but receives simulated axle
counting events via a gRPC interface.

3.4.3 Trustworthy Subsystem

In this thesis, the trustworthy system is a Thales AzLM axle counter that has already been
certified for use in Germany. It uses a NeuPro interface to communicate with an electronic
interlocking. In the Simplex-based object controller, it does not communicate with the
interlocking directly, but with the decision module. It receives axle counting events from
its connected TDPs via a proprietary protocol. For the purpose of the evaluation, axle
counting events can also be simulated.

3.4.4 Decision Module

The design and implementation of the decision module are the main contributions of
this thesis. In many Simplex applications, the decision module monitors the state of the
environment independently of the subsystems. Based on the environment state and the
proposed actions of the subsystems, it can then decide whether to switch. This approach
is, however, not applicable to the axle counting use case. To detect a potential error in the
unreliable subsystem, the system compares its output to the trusted subsystem’s output
which is assumed to be correct. If both subsystems report an identical axle counting event
within a specified time frame, the decision module can safely forward the event to the
interlocking. However, if the events differ or only one subsystem reports an event, the
decision module knows that an error has occurred. As discussed in subsection 3.3.4, this
naive approach is possible because the NeuPro and EULYNX protocols use the same order
or messages.

As discussed in subsection 3.3.1, an axle counter can only cause a safety violation by
sending a false occupancy status report. Therefore, the only message type out of the ones
shown in Table 3.6 we consider in detail is TVPS Occupancy Status. The equivalent NeuPro
and EULYNX messages share three payload fields: Occupancy Status, Ability to Force
Clear and Filling Level. Out of these fields, only occupancy status affects the ability to
use the axle counter and must be compared between subsystems. For other messages, the
decision module still compares message types to ensure the subsystems follow the same
message flow.

2https://github.com/eulynx-live/subsystems/tree/main/src/TrainDetectionSystem

31

https://github.com/eulynx-live/subsystems/tree/main/src/TrainDetectionSystem

3 Concept

In other use cases, the decision module could then switch to the trustworthy subsystem.
This is not possible for the axle counters, since the trustworthy axle counter is not EULYNX-
compatible. It would be possible to implement a translation component, but this thesis
opts for the Simplex approach since it offers a number of advantages:

Simpler Implementation A NeuPro-EULYNX translation component would have to be
kept up to date with the latest EULYNX release. Since it would be a safety-critical
part of the object controller, it would also have to be recertified with every update.
The decision module as described here would be simpler to implement and updates
would be constrained to the unreliable subsystem. Since the unreliable subsystem
does not need to be safe, it can be updated without requiring certification.

Use of EULYNX-specific information As discussed in subsection 3.3.4, EULYNX transmits
additional information about the status of TVPS. Since a NeuPro axle counter does
not collect this information, it would not be available to the interlocking when using
a translation component. Since the Simplex approach forwards the messages of
the EULYNX axle counter so long as they do not stand in conflict with the NeuPro
axle counter’s messages, the additional information specified by EULYNX remains
usable.

32

4 Implementation

This chapter describes the implementation of the Simplex-based object controller. We begin
by describing the tooling and hardware used in the implementation in Section 4.1 and
Section 4.2. We then discuss how our prototype implements the architecture established
earlier, focusing on how patterns in the implementation reflect the safety requirements.
Finally, we discuss the system’s timing behavior and possible adaptation to a realtime
platform in Section 4.5

4.1 Tooling

For many components of the Simplex system, this thesis reuses existing components.
This is done in order to achieve a lower implementation effort and approximate a real-
world scenario in which the subsystems would not be specifically tailored to the decision
module.

4.1.1 RaSTA Implementation and gRPC-RaSTA Bridge

As explained in Chapter 1, the RaSTA protocol is used for network communication in
railway contexts. There exist a small number of open-source RaSTA implementations.
The first is written in C and maintained by Markus Heinrich.3 The EULYNX Live RaSTA
implementation4 is based on this one, but makes changes to the software architecture,
such as using an event loop instead of multiple threads. Finally, there is an implementation
maintained by the Swiss Federal Railways.5 This implementation is production quality
and was developed according to DIN EN 50128 [14]. However, since it was only released
late in the process of writing this thesis, it could not be used for the Simplex-based object
controller.

This thesis uses the EULYNX Live RaSTA implementation for network communication.
However, since the event-based programming interface makes the implementation more
difficult to use, it also provides a gRPC bridge. The gRPC bridge presents an abstraction
from the underlying event loop and real-time considerations (e.g. heartbeat messages).

4.1.2 SCI Implementation

EULYNX defines the SCI suite of protocols for application-layer communication. In order
to compare subsystem messages, this thesis makes use of an SCI implementation devel-
oped by the author for a previous project.6 This implementation is written in Rust which

3https://github.com/Railway-CCS/rasta-protocol
4https://github.com/eulynx-live/librasta/
5https://github.com/SchweizerischeBundesbahnen/sbb-rasta-stack
6https://github.com/ctiedt/rasta-rs

33

https://github.com/Railway-CCS/rasta-protocol
https://github.com/eulynx-live/librasta/
https://github.com/SchweizerischeBundesbahnen/sbb-rasta-stack
https://github.com/ctiedt/rasta-rs

4 Implementation

makes it directly usable for the Simplex-based object controller and uses no dependencies
apart from Rust’s standard library.

4.1.3 Rust

The Simplex-based object controller is implemented in Rust.7 Rust is a systems program-
ming language focused on memory safety and performance. This makes it an ideal tool
for the development of safety-critical and realtime systems. A qualified compiler exists in
the form of Ferrocene.8

Rust ensures memory safety through its ownership system. This system statically tracks
at compile time how values are moved in memory and automatically frees memory after
it is no longer used. This prevents common memory management errors, such as use after
free or double free. Since the automatic memory management is not based on garbage
collection at runtime, Rust programs perform deterministically and achieve a similar level
of performance to C.

4.2 Hardware

The Simplex Architecture does not directly address the robustness of the hardware the
system runs on. While a Simplex-based system can tolerate hardware faults in the unreli-
able subsystem if the subsystem runs on a different machine than the decision module,
the decision module must be assumed to work reliably. In this thesis, the decision module
runs on a Revolution Pi,9 a Raspberry Pi-based computer hardened for industrial use
cases.

As described in Section 3.4, the trustworthy subsystem is a fully functional object
controller. As such, it runs on separate hardware from the decision module in a 2-out-of-3
redundancy configuration. It is connected to the same wired network as the decision
module and communicates using RaSTA over ethernet.

The TDS simulator is provided as a Docker container. Since the decision module
ensures the safety of the system as a whole, the TDS simulator does not need to run
on safe hardware. In the prototype developed in this thesis, it runs on a regular, non-
hardened x86-64 desktop PC. To simplify the setup of the prototype, the TDS simulator
does not use a RaSTA connection to communicate with the decision module. Instead, it
sends and receives SCI messages over a gRPC connection.

Similarly, the interlocking is provided as a Docker container. Since it is not part of the
object controller, it can run on an arbitrary machine. In this case, it runs on the same
computer as the unreliable subsystem.

7https://rust-lang.org
8https://ferrous-systems.com/ferrocene/
9https://revolutionpi.de/

34

https://rust-lang.org
https://ferrous-systems.com/ferrocene/
https://revolutionpi.de/

4.3 Software Architecture

4.3 Software Architecture

The Simplex-based Object Controller implements the architecture discussed in Section 3.4.
However, we introduce a number of additional software components in order to create a
more maintainable implementation.

Interlocking
Connection

Configuration

Decision
Module

Trustworthy
Subsystem

Unreliable
Subsystem

Interlocking

Axle Counter

Figure 4.1: The architecture of the Simplex-based Object Controller including software components.
Components in the blue box were developed as part of this thesis. Dashed lines represent RaSTA
connections.

At a high level, the system is represented by the AxleCounter structure as shown
in Figure 4.1. The AxleCounter maintains the system configuration, connection to the
interlocking and actual decision module.

Trustworthy
Subsystem
Connection

Unreliable
Subsystem
Connection

Decision
Strategy

Interlocking
Receiver

Decision Module

Trustworthy
Subsystem

Unreliable
Subsystem

Figure 4.2: Software Architecture of the Decision Module. Dashed arrows represent RaSTA connec-
tions.

The decision module itself also contains multiple software components. These are
shown in Figure 4.2:

Decision Strategy This component contains the actual behavior of the decision module.
The implementation of the decision strategy can be switched to implement different
behaviors for the decision module.

Interlocking Receiver The decision module receives and forwards messages from the
interlocking to the subsystems through this component.

35

4 Implementation

Subsystems These components maintain the connection to the actual subsystems which
are connected to the Simplex-based Object Controller. They forward messages from
the interlocking to these systems and forward messages from the systems to the
decision strategy.

4.3.1 Axle Counter and Configuration

As discussed earlier, the system is represented at a high level by the AxleCounter struc-
ture.

rasta_id = "256"
ixl_address = "http://127.0.0.1:5100"
ixl_delay = 10000
timeout = 5000
strategy = "AlwaysUnreliable"

[trustworthy]
ixl_address = "0.0.0.0:8001"

[unreliable]
ixl_address = "0.0.0.0:8002"

Listing 2: Example configuration of the Simplex system

The AxleCounter is created from a configuration file, an example of which is shown in
Listing 2. The configuration consists of the following parameters:

RaSTA ID The Simplex system’s RaSTA ID. This is required for establishing a connection
to the interlocking.

Interlocking Address The URL on which the interlocking listens for gRPC connections.

Interlocking Connection Delay The connection to the interlocking can only be made once
the subsystems have established a gRPC connection to the decision module. This
timer is used to ensure this order of operations is kept.

Message Timeout This timeout defines how long the decision module waits after receiving
a message from one subsystem for a message from the other subsystem before
assuming it timed out.

Decision Strategy The switching strategy to be used by the decision module. Here, it is
represented by a string which is mapped to an enumeration listing all supported
strategies.

Subsystem Addresses The addresses on which the gRPC servers for the subsystems listen
for connections.

Notably, this configuration does not contain any information about the SCI IDs or TVPS
of the subsystems. Instead, the subsystems must be configured with identically named
TVPS and SCI IDs to simplify the decision module.

36

4.3 Software Architecture

4.3.2 Subsystems

The subsystems are represented in code by the Subsystem trait as shown in Listing 3.
This makes it possible to implement different subsystem connections depending on the
decision module’s target platform.

pub trait Subsystem {
fn addr(&self) -> SocketAddr;
fn incoming_messages(&self) -> Receiver<SCITelegram>;
fn subscribe_to_ixl(&mut self, receiver: Receiver<SCITelegram>);
fn start_listening(self);

}

Listing 3: The Subsystem trait

The subsystem connection implementation must provide methods to

1. Receive messages sent by the subsystem in the decision module

2. Forward messages from the interlocking to the subsystem

3. Connect to the subsystem and start forwarding messages

Since both subsystems are required to share the same SCI ID and TVPS names, most
messages can be forwarded without any intervention. Only for messages which have
different payloads in NeuPro and EULYNX, interpretation has to take place.

For the prototype presented in this thesis, the Subsystem trait is only implemented for
the GrpcSubsystem structure which uses a gRPC connection to communicate with the
TDS simulator or through a RaSTA bridge with the trustworthy subsystem.

4.3.3 Decision Module

The decision module is represented by a structure which contains the subsystems and
a decision strategy. It forwards messages between the interlocking and subsystems,
translating between EULYNX and NeuPro if necessary. Since the subsystems are connected
to the Simplex system using the gRPC-RaSTA bridge, the decision module provides two
gRPC servers. Messages from the interlocking are always forwarded to both subsystems,
regardless of which subsystem is currently active. If a subsystem sends a message to the
decision module, it is only forwarded if the subsystem is currently active.

At one time, only one subsystem is considered active. This information is stored in the
decision module and managed by the decision strategy. This strategy is a structure that
implements the DecisionStrategy trait which is shown in Listing 4.

This approach makes it possible to define different behaviors for the decision module.
By defining the INITIAL_SUBSYSTEM associated constant, the decision strategy determines
which subsystem is active when the decision module is started. While it is running, the de-
cision module continuously awaits messages from both subsystems. After it has received a
message from one subsystem, it waits until it receives a message from the other subsystem
or the configurable timer has run out. The EULYNX SCI-TDS specification defines timers
for various purposes, such as how long a TVPS waits until reporting an occupancy status

37

4 Implementation

pub trait DecisionStrategy: Send + Sync {
const INITIAL_SUBSYSTEM: ActiveSubsystem;

fn switch_to(
&self,
msg_trustworthy: &Option<SCITelegram>,
msg_unreliable: &Option<SCITelegram>,

) -> Option<ActiveSubsystem>;
}

Listing 4: The DecisionStrategy trait

change to the interlocking. These timers are configurable with a recommended range
from 100 ms to 10 s. Since these value of these timers in the subsystems is unknown, the
decision module’s timeout can also be configured as part of the axle counter configuration.
After receiving both messages or a timeout, the decision module then passes these mes-
sages to the decision strategy’s DecisionStrategy::switch_to method. If the timer for
a subsystem ran out, it instead passes a None value to the method. The decision strategy
then decides if the active subsystem should be switched. It returns None if the active
subsystem should not be switched, or Some(AS) where AS is the subsystem that should
be switched to.

We consider the decision strategy and decision module separately here. Therefore, the
decision strategy outputs whether the decision module should switch to the trustworthy
subsystem, even though it closes the connection to the interlocking in practice. The default
implementation of the decision strategy makes the decision whether to switch in multiple
steps:

1. Did one of the systems time out? If so, switch to the trustworthy subsystem.

2. Did the subsystems send messages of different types? If so, switch to the trustwor-
thy subsystem.

3. Did both subsystems send an occupancy status message? If not, do not switch.

4. If both subsystems sent an occupancy status message, compare the payloads. Com-
pare only the fields that are shared between NeuPro and EULYNX, taking into
account differences in semantics. If they differ, switch to the trustworthy subsystem.
Otherwise, do not switch.

Other message types do not need to be compared because they either do not have any
payload or only exist in EULYNX. Since the NeuPro axle counter is safe without them, we
do not consider them safety-critical.

Listing 5 shows an implementation of this strategy. Note that the case in which neither
subsystem sent a message is marked as unreachable. If it occurs during the system’s
runtime, it causes a panic thereby shutting down the system. The case is marked as
unreachable since the decision strategy is only invoked if at least one subsystem sent a
message. In the case where both subsystems sent a message, their message types are
compared first. The SCITelegram type only provides convenient access to the message’s

38

4.4 Error Handling Strategies

fn switch_to(
&self,
msg_trustworthy: &Option<SCITelegram>,
msg_unreliable: &Option<SCITelegram>,

) -> Option<ActiveSubsystem> {
match (msg_trustworthy, msg_unreliable) {

(None, None) => unreachable!(),
(None, Some(_)) | (Some(_), None) => Some(ActiveSubsystem::Trustworthy),
(Some(tw), Some(ur)) => {

if tw.message_type != ur.message_type {
return Some(ActiveSubsystem::Trustworthy);

}
if tw.message_type == SCIMessageType::scitds_tvps_occupancy_status() {

let occupancy_status_differs = tw.payload[0] != ur.payload[0];
if occupancy_status_differs {

Some(ActiveSubsystem::Trustworthy)
} else {

None
}

} else {
None

}
}

}
}

Listing 5: The switch_to implementation of the default decision strategy

fields and does not perform any interpretation or conversion on the message. Since
message types have the same numerical values between NeuPro and EULYNX, they can
simply be compared. If both subsystems sent an occupancy status message, their payloads
must be compared. The occupancy status itself is encoded as a symbolic one byte integer
and is the same between NeuPro and EULYNX. The ability to force section status to clear
is a case of changed semantics as discussed in subsection 3.3.4. In NeuPro, the values
false and true are encoded as 0 and 1, whereas EULYNX encodes them as 1 and 2. In
order to compare them, the value in the NeuPro message must be increased by 1. Finally,
the filling level is encoded equally between NeuPro and EULYNX, allowing a comparison
without any conversion.

4.4 Error Handling Strategies

So far, we have not discussed the system’s behavior if the decision strategy recommends
a switch. As discussed in subsection 3.3.3, multiple error handling strategies can be
implemented.

39

4 Implementation

let (t, u) = futures::join!(
tokio::time::timeout(timeout, trustworthy_incoming.recv()),
tokio::time::timeout(timeout, unreliable_incoming.recv())

);

let t = t.ok().map(Result::unwrap);
let u = u.ok().map(Result::unwrap); // (1)

if t.is_none() && u.is_none() { // (2)
continue;

}

if let Some(switch) = strategy.switch_to(&t, &u) { // (3)
error!("Decision Module requires switch to {switch:?} subsystem.");
*active.write().await = switch;

}

match *active.read().await { // (4)
ActiveSubsystem::Trustworthy => yield t.unwrap(),
ActiveSubsystem::Unreliable => yield u.unwrap(),

}

Listing 6: Excerpt from the decision module main loop for handling messages from the subsystems.

These strategies must be implemented in the DecisionModule::run method which
handles incoming subsystem messages. Listing 6 shows the relevant excerpt of this
method. Note that the excerpt does not contain any error handling yet. This excerpt runs
in an infinite loop. For each iteration, the decision module performs the following steps
which are also numbered as comments in the listing:

1. Wait for messages from both subsystems or a timeout.

2. If both subsystems’ timers ran out, neither sent a message. Skip the remainder of
the iteration and wait for a new message.

3. Invoke the decision strategy to decide if the active subsystem must be switched.
Note that the error! macro is only used for logging purposes and does not change
the decision module’s behavior.

4. Depending on which subsystem is now active, forward its message.

The possible error handling strategies described earlier are:

1. Report TVPS as Disturbed, Unable to be forced to clear

2. Close Process Data Interface (PDI) Connection

3. Close RaSTA Connection

40

4.4 Error Handling Strategies

The first of these is the most complex to implement, since it requires the construction
of SCI telegrams with payload and it keeps the connection to the interlocking alive. An
example implementation is shown in Listing 7.

if let Some(switch) = strategy.switch_to(&t, &u) {
error!("Decision Module requires switch to {switch:?} subsystem.");
*active.write().await = switch;
error_occurred = true; // (1)

}

if error_occurred { // (2)
let tvps_id = &t.unwrap().sender_id;
yield SCITelegram::tvps_occupancy_status(

tvps_id,
ixl_id,
OccupancyStatus::Disturbed,
false, // Ability to force clear
0, // Filling Level
POMStatus::NotApplicable,
DisturbanceStatus::Operational,
ChangeTrigger::TechnicalFailure

);
} else {

match *active.read().await {
ActiveSubsystem::Trustworthy => yield t.unwrap(),
ActiveSubsystem::Unreliable => yield u.unwrap(),

}
}

Listing 7: Implementation of the first error handling strategy.

First, it introduces a variable error_occurred (comment 1). This variable must be
initialized outside the decision module loop so it does not get reset in every iteration. If
the decision strategy requires a change of active subsystem, this variable is set to true. If
an error has occurred, the decision module no longer forwards a subsystem’s telegram.
Instead, it creates its own TVPS occupancy status telegram which reports the status as
disturbed, unable to be forced to clear (comment 2). Note that in order to create this telegram,
the decision module needs the name of the TVPS. This implementation also simplifies
the error reporting. A more correct implementation should only report the status of all
TVPSs as disturbed once and only send a new status telegram after an Update Filling
Level command from the interlocking. Since messages received from the interlocking and
messages sent by the decision module are handled separately, this would be more difficult
to implement. Even this implementation has the disadvantage of requiring a library to
create EULYNX SCI messages. If the EULYNX specification is updated and new fields are
added to the TVPS Occupancy Status message, the decision module has to be updated as
well.

41

4 Implementation

The second strategy closes the PDI connection to the interlocking. An implementation
is shown in Listing 8.

if let Some(switch) = strategy.switch_to(&t, &u) {
error!("Decision Module requires switch to {switch:?} subsystem.");
*active.write().await = switch;
yield SCITelegram::close(

ProtocolType::SciTDS,
tds_id,
ixl_id,
SCICloseReason::ProtocolError,

);
tokio::time::sleep(timeout).await;
std::process::exit(1);

}

match *active.read().await {
ActiveSubsystem::Trustworthy => yield t.unwrap(),
ActiveSubsystem::Unreliable => yield u.unwrap(),

}

Listing 8: Implementation of the second error handling strategy.

This strategy seems similar to the first one, but is slightly simpler to implement. Since
it closes the connection to the interlocking, it does not require the introduction of any new
state. Instead, if the decision strategy requires a switch of active subsystem, the decision
module sends the telegram to close the connection, waits for some time to allow the
telegram to be sent and then exits the process. However, it still requires an SCI telegram
to be constructed and sent. This has the same disadvantages with regards to updates
discussed before, although the generic part of EULYNX protocols is less likely to change
with updates than the field element-specific parts.

The final strategy is to close the connection on the RaSTA level. If the TDS becomes
unavailable, the interlocking must assume it is disturbed. Therefore, this strategy also
fulfills the safety requirements.

As Listing 9 shows, this strategy has the shortest implementation. The decision module
does not maintain a direct RaSTA connection, but uses the gRPC-RaSTA bridge instead.
If the decision module’s process exits, the RaSTA bridge automatically terminates the
connection to the interlocking. Since it does not work on the level of the SCI connection,
but the RaSTA connection, it requires no additional messages to be constructed.

Since the Simplex-based Object controller cannot remain available without the unreli-
able subsystem, the strategies discussed here all have the same impact on the system’s
availability.

The argumentation for trust in the decision module relies on its simplicity. Since the
third error handling strategy is the simplest to implement, we decided to use it for the
Simplex-based Object Controller.

42

4.5 Timing Requirements

if let Some(switch) = strategy.switch_to(&t, &u) {
error!("Decision Module requires switch to {switch:?} subsystem.");
*active.write().await = switch;
std::process::exit(1);

}

match *active.read().await {
ActiveSubsystem::Trustworthy => yield t.unwrap(),
ActiveSubsystem::Unreliable => yield u.unwrap(),

}

Listing 9: Implementation of the third error handling strategy.

4.5 Timing Requirements

After a change in track occupancy, the axle counter must notify the interlocking of the
change within a manufacturer-defined time frame. The subsystems send messages after
a maximum delay ttw and tun for the trustworthy and unreliable subsystem respectively.
We define ts to be the greater of both delays, i.e.

ts = max{ttw, tun}

In addition, there is a manufacturer-defined inhibition timer ti before a message is sent.
Since both subsystems are connected to the same data source, they must both send a
message within ts + ti after registering an axle counting event.

In addition to the subsystems’ delay ts, the decision module adds a network delay tn.
We define this delay as the sum of network transmission times between both subsystems
and the decision module. The decision strategy also takes some execution time tds. Since
this time is significantly shorter than the other timers and delays, we do not consider it.
In total, this means the time t between an axle counting event and the SCI-TDS message
being sent from the Simplex-based Object Controller is

t = ts + ti + tn

The prototype presented here follows a best-effort approach for timing behavior. The
loop and timeout for receiving messages approximate a cyclical execution. However,
since the prototype runs as a standard Linux application, it cannot provide any realtime
guarantees. There are two possible ways to ensure realtime properties of the decision
module:

Using Linux with PREEMPT_RT On its own, Linux is not suitable as a realtime kernel. How-
ever, with the PREEMPT_RT patch set and the SCHED_DEADLINE scheduling policy, it
can be used as one. The Revolution Pi used for the prototype already runs a Linux
distribution patched for realtime support.

Using another realtime environment, such as ARINC 653 While Linux can be patched to
include realtime support, there exist a number of operating systems designed from

43

4 Implementation

the ground up for realtime. The ARINC 653 standard defines an interface that can be
used to develop applications that leverage these realtime capabilities. Each ARINC
653 application runs in a separate partition which is scheduled periodically. This
makes it possible to clearly define the timing behavior of individual applications as
well as interactions between partitions.

The current prototype heavily relies on gRPC for communication between compo-
nents. However, this implementation detail is not exposed to the decision module. For a
production-grade implementation, the subsystem implementations could be updated to
directly use RaSTA for communication without changing the decision module.

44

5 Evaluation

In this chapter, we evaluate if the prototype of the Simplex-based Object Controller fulfills
the requirements defined in Section 3.2. We show this using a qualitative, experimental
approach. Further, we evaluate the complexity of the prototype’s decision module and
compare it with the alternative approach of a NeuPro to EULYNX translation component.

5.1 Experimental Evaluation

In order to show that the prototype developed in this thesis fulfills the safety requirements
defined earlier, we provide a qualitative, experimental evaluation. This evaluation uses a
scenario based on the EULYNX standard to show that incorrect behavior in the unreliable
subsystem does not impact the safety of the Simplex-based Object Controller.

5.1.1 Scenario

We base the evaluation of our prototype on the EULYNX use case for normal operation,
EU.TDS.5979 [17]. This use case represents a train passing through a Track Vacancy
Proving Section (TVPS).

Wheel :Subsystem - Train
Detection System

Passing Detected (Incoming)

Subsystem -
Electronic Interlocking

Passing Detected (Outgoing)

Msg_TVPS_Occupancy_Status
(Occupied, Unable to be forced to clear)

after "Delay of Notification"
Timer

Msg_TVPS_Occupancy_Status
(Occupied, Unable to be forced to clear)

Figure 5.1: The scenario adapted from the Normal Operation use case (TDS UC2.1.1.1) as defined by
EULYNX.

45

5 Evaluation

Our evaluation scenario (shown in Figure 5.1) is a simplified version of the EULYNX
use case that consists of one axle entering and then leaving the TVPS. In the scenario, the
TVPS must go through the following states:

1. Before the axle enters, the TVPS is in the state Vacant, Unable to be forced to clear.

2. After the axle has entered the TVPS, its status changes to Occupied, Unable to be
forced to clear.

3. After the axle has exited and the preconfigured timer has run out, its status changes
to Vacant, Unable to be forced to clear.

For each of these status changes, the system also has to meet the timing requirements
defined in Section 4.5.

5.1.2 Test Cases

We define a number of test cases for the evaluation scenario based on the fault model
defined in subsection 3.3.1. As discussed there, safety violations can occur if a TVPS is
falsely reported as vacant.

Since both the states Occupied and Disturbed mean the TVPS in not usable, we refer to
them together as unavailable states. The TVPS can enter an unsafe state in two cases:

1. The TVPS is unavailable and falsely reports becoming vacant.

2. The TVPS goes from vacant to unavailable, but does not report it.

Test Case Name Description Expected behavior
T1 Both Correct Both subsystems correctly

register a train entering and
leaving a TVPS.

The TVPS is reported as oc-
cupied and then as vacant.

T2 Unreliable Timeout The unreliable subsystem
does not register one of the
axles entering and the deci-
sion module times out.

The TDS closes the connec-
tion.

T3 Incorrect Message The unreliable subsystem
registers one of the axles en-
tering the TVPS as leaving.

The TDS closes the connec-
tion.

Table 5.1: The list of test cases.

Based on these possibilities, we define the test cases listed in Table 5.1. T1 checks if the
system correctly forwards messages to the interlocking if both subsystems register the
same events. T2 and T3 check if the system correctly terminates the connection to the
interlocking if the unreliable subsystem does not send a message within the defined time
frame or if sends a different message than the trustworthy subsystem.

46

5.1 Experimental Evaluation

5.1.3 Experimental Setup

The experimental setup uses the components described in Chapter 4. Both the trustworthy
and unreliable subsystem implement the same interface for simulated TDPs. We imple-
ment the different test cases by varying the axle counting events sent to the subsystems.
For T1, both subsystems receive the same events. For T2, the second axle entering is only
sent to the trustworthy subsystem to cause a timeout in the decision module. For T3, both
subsystems receive different axle counting events at the same time.

- both_ok:
unreliable: "http://100.116.102.88:5102/"
trustworthy: "http://100.116.102.88:5210/"
default_delay: 1
steps:

- increase_axle_count:
unreliable: "99B101"
trustworthy: "1"

- increase_axle_count:
unreliable: "99B101"
trustworthy: "1"

- decrease_axle_count:
unreliable: "99B101"
trustworthy: "1"

- decrease_axle_count:
unreliable: "99B101"
trustworthy: "1"

Listing 10: Definition of the testcase for T1.

We implement these test cases using a simple framework for coordinating axle counting
events. As shown in Listing 10, test cases are specified in a YAML format and consist of
different steps which may be applied to one or both subsystems. The framework supports
the following types of steps:

1. Increase the axle count of a section

2. Decrease the axle count of a section

3. Wait for a specified number of seconds

Between steps, a delay of default_delay seconds is inserted.

5.1.4 Results

In a qualitative evaluation, the Simplex-based Object Controller correctly forwarded equiv-
alent messages in T1 and closed the RaSTA connection in T2 and T3.

This behavior reduces the availability of the object controller while keeping its safety
intact. Reliability, the correctness of the output, and integrity requiring that the output is
unaltered, are also traded off against availability. After a mismatch between the controllers

47

5 Evaluation

and the decision module severs the connection to the interlocking, both controllers and
the decision module must be reset to their initial states. The additional effort required for
the reset negatively impacts the system’s maintainability. It may be possible to reset the
subsystems remotely to reduce this burden, although our prototype does not implement
this functionality.

5.2 Complexity of Decision Module

The assumption that the Simplex-based Object controller is easier to certify than one using
other means of safety relies on the simplicity of the decision module. In order to validate
this assumption, we evaluate the decision module’s source code using the cyclomatic
complexity [28] and cognitive complexity [9] metrics. While cyclomatic complexity focuses
on the testability of a procedure, cognitive complexity provides a measure of how easy
the code is to understand.

Cyclomatic complexity measures the number of linearly independent paths in the
control flow of a program. The metric can be calculated from the control flow graph of
the decision strategy shown in Figure 5.2 by counting the number of different paths from
the start of the function (the tree’s root node, marked in red) to a return statement (any
leaf node, marked in blue). This results in a cyclomatic complexity of 6. McCabe defines
values under 10 as low complexity [29], making the decision module easily testable.

Cognitive complexity is defined similarly to cyclomatic complexity, but weights some
control flow concepts differently to better match an intuitive understanding of complexity
[8]. This metric gives a score of 8 for the decision strategy. Since cognitive complexity
penalizes nested control structures more heavily, the slightly higher result is to be expected.
G. Ann Campbell, the author of [8], recommends a maximum complexity of 15 for a
function [7]. The decision strategy does not exceed this value which means that the code
is reasonably understandable.

The prototype decision module runs in an event loop which is not suitable for a
production-grade implementation (refer to Section 4.5 for more information). There-
fore, we do not consider the complexity of the part of the decision module that handles
communication with the subsystems and interlocking. However, we discuss how the
prototype could be ported to a realtime platform, such as ARINC 653.

In [32], Moumouris and Zehnder describe the design of an object controller built on
a segregating platform. Notably, their prototype executes safety-critical and non-critical
applications on the same hardware by using the operating system’s segregation to isolate
them. Given that the Simplex architecture also combines safety-critical and non-critical
components, a similar partitioning scheme makes sense for the Simplex-based Object
Controller. One possible scheme is shown in Figure 5.3.

This partitioning scheme places each component in its own partition. They can therefore
be treated as independent for the purpose of updates. The unreliable subsystem can
also be executed on the same hardware as the decision module. Besides the Simplex
architecture components, the partitioning scheme also includes a RaSTA and TCP stack
which are shared by the other partitions.

In order to port the prototype to a platform such as ARINC 653, the following work
would be necessary:

48

5.2 Complexity of Decision Module

Check for timeout

Both subsystems
timed out

Unreachable

One subsystem
timed out

Switch to
trustworthy subsystem

Neither subsystem
timed out

Compare
message types

Different
message types

Switch to
trustworthy subsystem

Same
message type

Check if message type is
TVPS Occupancy Status

No

Return

Yes

Compare
Occupancy Status

Different
Status

Switch to
trustworthy subsystem

Same
Status

Return

Figure 5.2: Control flow of the decision strategy implementation.

RaSTA
Stack
SIL 4

TCP/IP
Stack
SIL 0

Decision
Module

SIL 4

Trustworthy
Subsystem
Connection

SIL 4

Unreliable
Subsystem

SIL 0

Interlocking
Connection

SIL 4

Segregating Operating System

Hardware

Figure 5.3: A possible partitioning scheme for the Simplex-based Object Controller on a segregating
platform (such as ARINC 653).

49

5 Evaluation

1. Replacing tokio tasks with partitions

2. Replacing tokio timers with periodic and aperiodic tasks as appropriate

3. Replacing tokio channels with platform channels

4. Replacing the error handling

As discussed in Section 4.5, the prototype uses a best-effort approach for timing guar-
antees. It uses an event loop built with the tokio runtime for asynchronous tasks. In the
prototype, the decision module and subsystem connections are each executed in their own
tasks. On a segregating platform, these can be represented by one partition per component.
ARINC 653 does not have an equivalent abstraction to timers in tokio. However, tasks can
be defined to have deadlines. Further, ARINC 653 provides channels for communication
between partitions. In combination, these can replicate the behavior implemented with
timers in the prototype. The decision strategy could then be executed as a periodic task
with a deadline equal to the timeout in the prototype. Instead of actively waiting for
messages from both subsystems, the subsystem connections write messages to a channel
when they arrive. When the decision strategy is scheduled to run, it attempts to read one
message for each subsystem. If no message is available for a subsystem, this is treated the
same as a timeout in the prototype.

5.3 Comparison with NeuPro-EULYNX translator

Another option to use an existing, trusted component (TC) with a new interface is a
translation module (TM) implementing the updated interface, as shown in Figure 5.4.
The same result could be achieved by updating the trusted controller itself. However,
considering the trusted controller and translation module as two conceptual components
makes describing and discussing the necessary changes and implications easier. Unlike
the Simplex architecture, the translation-based approach has only two components, the
trusted component and the translation module, on which the dependability attributes of
the translation-based system depend. The Simplex approach trades off availability for
safety because it cannot switch control to the trusted component. In contrast, availability
will be higher in the translation-based approach, but the correctness of the system depends
on the translation module as well. As illustrated in Table 5.2, to ensure the correct working
of the system in the Simplex-based solution, TC and UC have to work correctly, while in
the translation-based solution, TC and TM have to work correctly. However, the Simplex
system remains safe even if the UC is faulty.

Trusted Controller Translation Module Environment

Translation-based System

Figure 5.4: The architecture of a translation-based system.

50

5.3 Comparison with NeuPro-EULYNX translator

Table 5.2: System states, which are correct, faulty, and unavailable, in dependence of the controller
system states.

UC
TC

correct faulty unavail.

correct correct unavail. unavail.
faulty unavail. faulty unavail.

unavail. unavail. unavail. unavail.

(a) Simplex-based solution

TM
TC

correct faulty unavail.

correct correct faulty unavail.
faulty faulty faulty unavail.

unavail. unavail. unavail. unavail.

(b) Translation-based solution

While the translation-based solution is more straightforward and has a simpler archi-
tecture, the Simplex approach offers advantages. Updates to the interface specification are
only reflected in the untrusted controller, leaving the trusted and, thus, safety-critical com-
ponents untouched. This is true as long as the updated interface contains only additional,
non-safety-critical information automatically forwarded by the decision module. However,
if the interface update adds any safety-critical functionality, the trusted controller’s safety
guarantees will not suffice and recertification is necessary. Finally, a decision module can
be easier to implement than a translation component. The decision module can be kept
generic except for specific messages where changed semantics between interfaces must be
considered.

In the translation-based approach, the translation module, which is safety-critical, al-
ways requires an update. Consequently, recertification is necessary for every update.
Further, the translation module must be able to translate all messages of the older inter-
face. Especially in cases where the interface specifications only exist in a human-readable
format and must be implemented manually, this introduces another source for errors.

We did not develop a translation module to compare the prototype in this thesis against,
but provide some estimations of how implementations would differ. We first consider the
translation from EULYNX to NeuPro and then the other direction.

Since the shared commands between NeuPro and EULYNX have identical payloads, no
translation would be necessary in this direction. There are a small number of commands
only available in EULYNX (see Table 3.6), but the trusted controller would simply reject
unknown commands.

Translating messages sent by the trusted controller would involve more effort. In
EULYNX, the default value for not applicable is not 0x00, but 0xFF. For message types with
additional fields in EULYNX, these fields would have to be set to the value for not applicable
by the translation module. The translation module would also have to take into account
fields with changed semantics (see subsection 3.3.4 for a more detailed description).

We cannot give an exact metric of how much this would increase the complexity of
the translation module compared to the decision strategy. However, the fact that it not
only needs to understand NeuPro messages, but transform them into EULYNX messages
would likely result in a more complex implementation.

51

6 Conclusion and Future Work

In Chapter 3 - Chapter 5, we developed and discussed an architecture for an object
controller with inherited trust. Given the prototype and its evaluation, we now provide a
conclusion, taking into account the limitations of our work. We close with a look at future
work.

6.1 Conclusion

This thesis discussed the challenges of digitization in the railway sector and introduced a
method for mitigating them. The railway sector started to become digitized in the 1980s,
but recent years saw the move from monolithic systems to component-based systems with
standardized interfaces. We focussed on the following challenges:

1. Railway infrastructure must go through a lengthy and complex certification process
before it can be used in the field.

2. Equipment has to be kept up to date with interface specifications, even though its
fundamental tasks do not change.

We discussed these challenges for the axle counting use case with the NeuPro and
EULYNX standards. Since EULYNX is based on NeuPro, the standards are partially
compatible. Commands remain identical between both standards and most changes to
messages do not change existing fields and only add new ones. Based on the require-
ments defined in Chapter 3, we concluded that the Simplex architecture is an appropriate
architectural pattern for transferring the trust in an existing, certified axle counting object
controller to an unproven one. We discussed how the Simplex-based object controller
must react to faults, showing that so long as the trustworthy subsystem remains in a safe
state, the system as a whole does as well. Since the trustworthy subsystem implements
a different interface than the unreliable one, we cannot switch control to it. Instead, we
trade off availability against safety by closing the connection to the interlocking in case of
mismatched subsystem outputs.

We presented a prototypical implementation of this architecture in Chapter 4. The
prototype makes use of standardized components, including an actual, certified NeuPro
axle counter. We gave an overview of how the Simplex architecture components are
represented in the prototype’s software architecture. Further, we specifically evaluated
implementations of the different error handling strategies discusses in Chapter 3 and
discussed the timing requirements of a EULYNX object controller. Since the prototype
uses an event loop and timers, it cannot make any realtime guarantees.

We presented an evaluation of our prototype in Chapter 5. Using a modified scenario
from the EULYNX standard, we evaluated the Simplex-based object controller’s behavior

53

6 Conclusion and Future Work

in three test cases representing both correct and erroneous outputs from the unreliable
subsystem. This qualitative evaluation showed that the system remained safe and if
possible also available. We further evaluated the code complexity of the prototype’s
decision module, showing that it is of low complexity. In this context we also discussed
how the prototype could be adapted to a safety platform and how our concept compares
to a translation-based approach. While the translation-based approach does not trade
off availability, it cannot make use of updated interface features and requires updates to
safety-critical components after an interface update.

Limitations While the prototype developed in this thesis demonstrates that the Simplex
architecture is applicable to the railway domain, it makes some trade-offs that are not
possible for a production-grade safety system. The prototype runs on a realtime-capable
Linux operating system, but as discussed in Chapter 4 is not developed using realtime
APIs. Further, the prototype is built in the Rust programming language. While a qualified
compiler exists in the form of Ferrocene, the prototype makes extensive use of third-party
libraries including tonic for gRPC support and the asynchronous runtime tokio.

These limitations mean that the prototype in its current state is not certifiable. However,
the changes discussed in Chapter 4 and Chapter 5 to port the prototype to a safety platform
would eliminate these concerns. On a safety platform, the asynchronous functionality
provided by tokio could be replaced by the operating system’s realtime capabilities and
instead of using the gRPC-RaSTA bridge, the system could use a production-grade RaSTA
implementation.

6.2 Future Work

This thesis demonstrated the applicability of the Simplex architecture to the axle counting
use case. However, we see great potential in the concept of inherited trust for other use
cases as well. As discussed, proving the safety of an entirely new system is a complex task.
Transferring the trust from an existing, trusted system can greatly reduce this burden.

Since our prototype only showed the theoretical applicability of the Simplex architecture
to a railway use case, a possible next step could be to port the prototype to a certifiable
platform. Experts on existing certification processes could be involved in this development
process to ensure the resulting system fulfills the necessary dependability requirements.

54

Bibliography

[1] K. Assaf, R. Schmid, C. Tiedt, F. Reiter, D. Friedenberger, and A. Polze. “Depend-
able Dynamic Real-Time Systems: Examples For The Applicability Of The Simplex
Architecture”. In: Submitted to ISORC, currently under review. 2024.

[2] A. Avizienis. “Arithmetic Error Codes: Cost and Effectiveness Studies for Appli-
cation in Digital System Design”. In: IEEE Transactions on Computers C-20.11 (Nov.
1971). Conference Name: IEEE Transactions on Computers, pages 1322–1331. issn:
1557-9956. doi: 10.1109/T-C.1971.223134. url: https://ieeexplore.ieee.
org/abstract/document/1671727 (visited on Jan. 15, 2024).

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and taxon-
omy of dependable and secure computing”. en. In: IEEE Transactions on Dependable
and Secure Computing 1.1 (Jan. 2004), pages 11–33. issn: 1545-5971. doi: 10.1109/
TDSC.2004.2. url: http://ieeexplore.ieee.org/document/1335465/ (visited
on Nov. 27, 2023).

[4] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. “The
System-Level Simplex Architecture for Improved Real-Time Embedded System
Safety”. In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Sym-
posium. 123 citations (Semantic Scholar/DOI) [2023-11-27]. San Francisco, CA, USA:
IEEE, Apr. 2009, pages 99–107. isbn: 978-0-7695-3636-1. doi: 10.1109/RTAS.2009.
20. url: http://ieeexplore.ieee.org/document/4840571/ (visited on Nov. 27,
2023).

[5] S. Bak, A. Greer, and S. Mitra. “Hybrid Cyberphysical System Verification with
Simplex Using Discrete Abstractions”. In: 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium. 18 citations (Semantic Scholar/DOI) [2023-08-
21]. Stockholm, Sweden: IEEE, Apr. 2010, pages 143–152. isbn: 978-1-4244-6690-0.
doi: 10.1109/RTAS.2010.27. url: http://ieeexplore.ieee.org/document/
5465972/ (visited on Aug. 21, 2023).

[6] A. Bilbao, I. Yarza, J. L. Montero, M. Azkarate-askasua, and N. Gonzalez. “A railway
safety and security concept for low-power mixed-criticality systems”. en. In: 2017
IEEE 15th International Conference on Industrial Informatics (INDIN). Emden: IEEE, July
2017, pages 59–64. isbn: 978-1-5386-0837-1. doi: 10.1109/INDIN.2017.8104747.
url: http://ieeexplore.ieee.org/document/8104747/ (visited on Jan. 22,
2024).

[7] G. A. Campbell. Answer to "SonarQube: Qualify Cognitive Complexity". July 2017. url:
https://stackoverflow.com/a/45084107 (visited on Feb. 29, 2024).

[8] G. A. Campbell. Cognitive Complexity - a new way of measuring understandability.
Technical report. 2023. url: https://www.sonarsource.com/docs/CognitiveCo
mplexity.pdf.

55

https://doi.org/10.1109/T-C.1971.223134
https://ieeexplore.ieee.org/abstract/document/1671727
https://ieeexplore.ieee.org/abstract/document/1671727
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
http://ieeexplore.ieee.org/document/1335465/
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1109/RTAS.2009.20
http://ieeexplore.ieee.org/document/4840571/
https://doi.org/10.1109/RTAS.2010.27
http://ieeexplore.ieee.org/document/5465972/
http://ieeexplore.ieee.org/document/5465972/
https://doi.org/10.1109/INDIN.2017.8104747
http://ieeexplore.ieee.org/document/8104747/
https://stackoverflow.com/a/45084107
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://www.sonarsource.com/docs/CognitiveComplexity.pdf

Bibliography

[9] G. A. Campbell. “Cognitive complexity: an overview and evaluation”. en. In: Proceed-
ings of the 2018 International Conference on Technical Debt. Gothenburg Sweden: ACM,
May 2018, pages 57–58. isbn: 978-1-4503-5713-5. doi: 10.1145/3194164.3194186.
url: https://dl.acm.org/doi/10.1145/3194164.3194186 (visited on Feb. 21,
2024).

[10] L. Chen and A. Avizienis. “N-VERSION PROGRAMMINC: A FAULT-TOLERANCE
APPROACH TO RELlABlLlTY OF SOFTWARE OPERATlON”. en. In: Twenty-Fifth
International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-
Five Years’. Pasadena, CA: IEEE, 1995, page 113. isbn: 978-0-8186-7150-0. doi: 10.
1109/FTCSH.1995.532621. url: http://ieeexplore.ieee.org/document/
532621/ (visited on Jan. 15, 2024).

[11] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar. “The Simplex
Reference Model: Limiting Fault-Propagation Due to Unreliable Components in
Cyber-Physical System Architectures”. In: 28th IEEE International Real-Time Systems
Symposium (RTSS 2007). 127 citations (Semantic Scholar/DOI) [2023-08-21]. Tucson,
AZ, USA: IEEE, Dec. 2007, pages 400–412. isbn: 978-0-7695-3062-8. doi: 10.1109/
RTSS.2007.34. url: http://ieeexplore.ieee.org/document/4408323/ (visited
on Aug. 21, 2023).

[12] F. Cristian. “Understanding fault-tolerant distributed systems”. en. In: Communica-
tions of the ACM 34.2 (Feb. 1991), pages 56–78. issn: 0001-0782, 1557-7317. doi: 10.
1145/102792.102801. url: https://dl.acm.org/doi/10.1145/102792.102801
(visited on Dec. 5, 2023).

[13] A. Damare, S. Roy, S. A. Smolka, and S. D. Stoller. “A Barrier Certificate-Based
Simplex Architecture with Application to Microgrids”. en. In: Runtime Verification.
Edited by T. Dang and V. Stolz. Volume 13498. Series Title: Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2022, pages 105–123. isbn:
978-3-031-17195-6 978-3-031-17196-3. doi: 10.1007/978-3-031-17196-3_6. url:
https://link.springer.com/10.1007/978-3-031-17196-3_6 (visited on
Nov. 27, 2023).

[14] DIN EN 50128:2012-03. Norm. Deutsches Institut für Normung e.V., 2012.

[15] B. P. Douglass. Real-Time Design Patterns: robust scalable architecture for Real-time
systems. The Addison-Wesley object technology series. Boston, MA: Addison-Wesley,
2003. isbn: 978-0-201-69956-2.

[16] EULYNX Consortium. EULYNX System Architecture. Standard Baseline 4.0. 2022.

[17] EULYNX Consortium. Requirements specification for subsystem TDS. Standard Baseline
4.0. 2022.

[18] P. Feth, D. Schneider, and R. Adler. “A Conceptual Safety Supervisor Definition and
Evaluation Framework for Autonomous Systems”. In: Computer Safety, Reliability,
and Security. Edited by S. Tonetta, E. Schoitsch, and F. Bitsch. Volume 10488. Series
Title: Lecture Notes in Computer Science. Cham: Springer International Publishing,
2017, pages 135–148. isbn: 978-3-319-66265-7 978-3-319-66266-4. doi: 10.1007/978-
3-319-66266-4_9. url: http://link.springer.com/10.1007/978-3-319-
66266-4_9 (visited on June 6, 2023).

56

https://doi.org/10.1145/3194164.3194186
https://dl.acm.org/doi/10.1145/3194164.3194186
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1109/FTCSH.1995.532621
http://ieeexplore.ieee.org/document/532621/
http://ieeexplore.ieee.org/document/532621/
https://doi.org/10.1109/RTSS.2007.34
https://doi.org/10.1109/RTSS.2007.34
http://ieeexplore.ieee.org/document/4408323/
https://doi.org/10.1145/102792.102801
https://doi.org/10.1145/102792.102801
https://dl.acm.org/doi/10.1145/102792.102801
https://doi.org/10.1007/978-3-031-17196-3_6
https://link.springer.com/10.1007/978-3-031-17196-3_6
https://doi.org/10.1007/978-3-319-66266-4_9
https://doi.org/10.1007/978-3-319-66266-4_9
http://link.springer.com/10.1007/978-3-319-66266-4_9
http://link.springer.com/10.1007/978-3-319-66266-4_9

Bibliography

[19] C. Fetzer, U. Schiffel, and M. Süßkraut. “AN-Encoding Compiler: Building Safety-
Critical Systems with Commodity Hardware”. en. In: Computer Safety, Reliability, and
Security. Edited by B. Buth, G. Rabe, and T. Seyfarth. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2009, pages 283–296. isbn: 978-3-642-04468-7.
doi: 10.1007/978-3-642-04468-7_23.

[20] P. Forin. “VITAL CODED MICROPROCESSOR PRINCIPLES AND APPLICATION
FOR VARIOUS TRANSIT SYSTEMS”. In: Control, Computers, Communications in
Transportation. Edited by J. .-. Perrin. IFAC Symposia Series. Oxford: Pergamon, Jan.
1990, pages 79–84. isbn: 978-0-08-037025-5. doi: 10.1016/B978-0-08-037025-
5.50017-7. url: https://www.sciencedirect.com/science/article/pii/
B9780080370255500177 (visited on Dec. 18, 2023).

[21] G. Gala, G. Fohler, P. Tummeltshammer, S. Resch, and R. Hametner. “RT-Cloud:
Virtualization Technologies and Cloud Computing for Railway Use-Case”. In: 2021
IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC). ISSN:
2375-5261. June 2021, pages 105–113. doi: 10.1109/ISORC52013.2021.00024. url:
https://ieeexplore.ieee.org/document/9469907 (visited on Feb. 25, 2024).

[22] W. Granig, L.-M. Faller, D. Hammerschmidt, and H. Zangl. “Dependability consid-
erations of redundant sensor systems”. In: Reliability Engineering & System Safety
190 (Oct. 2019), page 106522. issn: 0951-8320. doi: 10 . 1016 / j . ress . 2019 .
106522. url: https : / / www . sciencedirect . com / science / article / pii /
S0951832018314017 (visited on Feb. 25, 2024).

[23] L. Huang. “The Past, Present and Future of Railway Interlocking System”. en.
In: 2020 IEEE 5th International Conference on Intelligent Transportation Engineering
(ICITE). Beijing, China: IEEE, Sept. 2020, pages 170–174. isbn: 978-1-72819-409-7.
doi: 10.1109/ICITE50838.2020.9231438. url: https://ieeexplore.ieee.
org/document/9231438/ (visited on Jan. 24, 2024).

[24] A. Iliasov, D. Taylor, L. Laibinis, and A. Romanovsky. “Formal verification of railway
interlocking and its safety case”. en. In: Safety-Critical Systems Club ().

[25] M. John. A biographical dictionary of railway engineers. eng. Open Library ID:
OL4568025M. Newton Abbot [Eng.], North Pomfret, Vt: David & Charles, 1978.
isbn: 978-0-7153-7489-4.

[26] S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. “An approach to specifying and
verifying safety-critical systems with practical formal method SOFL”. In: Proceedings.
Fourth IEEE International Conference on Engineering of Complex Computer Systems (Cat.
No.98EX193). Aug. 1998, pages 100–114. doi: 10.1109/ICECCS.1998.706660. url:
https://ieeexplore.ieee.org/document/706660 (visited on Feb. 28, 2024).

[27] S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. “Applying SOFL to specify a
railway crossing controller for industry”. en. In: Proceedings. 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques. Boca Raton, FL, USA: IEEE Comput.
Soc, 1999, pages 16–27. isbn: 978-0-7695-0081-2. doi: 10.1109/WIFT.1998.766294.
url: http://ieeexplore.ieee.org/document/766294/ (visited on Jan. 22, 2024).

57

https://doi.org/10.1007/978-3-642-04468-7_23
https://doi.org/10.1016/B978-0-08-037025-5.50017-7
https://doi.org/10.1016/B978-0-08-037025-5.50017-7
https://www.sciencedirect.com/science/article/pii/B9780080370255500177
https://www.sciencedirect.com/science/article/pii/B9780080370255500177
https://doi.org/10.1109/ISORC52013.2021.00024
https://ieeexplore.ieee.org/document/9469907
https://doi.org/10.1016/j.ress.2019.106522
https://doi.org/10.1016/j.ress.2019.106522
https://www.sciencedirect.com/science/article/pii/S0951832018314017
https://www.sciencedirect.com/science/article/pii/S0951832018314017
https://doi.org/10.1109/ICITE50838.2020.9231438
https://ieeexplore.ieee.org/document/9231438/
https://ieeexplore.ieee.org/document/9231438/
https://doi.org/10.1109/ICECCS.1998.706660
https://ieeexplore.ieee.org/document/706660
https://doi.org/10.1109/WIFT.1998.766294
http://ieeexplore.ieee.org/document/766294/

Bibliography

[28] T. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software Engineering
SE-2.4 (Dec. 1976). Conference Name: IEEE Transactions on Software Engineering,
pages 308–320. issn: 1939-3520. doi: 10.1109/TSE.1976.233837. url: https:
//ieeexplore.ieee.org/document/1702388 (visited on Feb. 21, 2024).

[29] T. McCabe. Software Quality Metrics to Identify Risk. 2008. url: http://www.mccabe.
com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt.

[30] U. Mehmood, S. Bak, S. A. Smolka, and S. D. Stoller. “Safe CPS from unsafe con-
trollers”. en. In: Proceedings of the Workshop on Computation-Aware Algorithmic Design
for Cyber-Physical Systems. Nashville Tennessee: ACM, May 2021, pages 26–28. isbn:
978-1-4503-8399-8. doi: 10.1145/3457335.3461712. url: https://dl.acm.org/
doi/10.1145/3457335.3461712 (visited on Nov. 27, 2023).

[31] U. Mehmood, S. Sheikhi, S. Bak, S. A. Smolka, and S. D. Stoller. “The Black-Box
Simplex Architecture for Runtime Assurance of Autonomous CPS”. en. In: NASA
Formal Methods. Edited by J. V. Deshmukh, K. Havelund, and I. Perez. Volume 13260.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pages 231–250. isbn: 978-3-031-06772-3 978-3-031-06773-0. doi:
10.1007/978-3-031-06773-0_12. url: https://link.springer.com/10.1007/
978-3-031-06773-0_12 (visited on Nov. 27, 2023).

[32] S. Moumouris and M. Zehnder. “Integrierte Safety und Security durch software-
basierte Segregation im EULYNX Object Controller”. In: Signal und Draht (2023).

[33] P. Nagarajan, S. K. Kannan, C. Torens, M. E. Vukas, and G. F. Wilber. “ASTM F3269

- An Industry Standard on Run Time Assurance for Aircraft Systems”. en. In: AIAA
Scitech 2021 Forum. 16 citations (Semantic Scholar/DOI) [2023-06-15]. VIRTUAL
EVENT: American Institute of Aeronautics and Astronautics, Jan. 2021. isbn: 978-
1-62410-609-5. doi: 10.2514/6.2021-0525. url: https://arc.aiaa.org/doi/10.
2514/6.2021-0525 (visited on June 15, 2023).

[34] J. Pachl. Systemtechnik des Schienenverkehrs: Bahnbetrieb planen, steuern und sichern. ger.
11. Auflage. Wiesbaden [Heidelberg]: Springer Vieweg, 2022. isbn: 978-3-658-38265-
0.

[35] T. Petersen, J. Stock, and H. Federrath. Bedrohungsszenarien für Energieinfrastrukturen.
Technical report.

[36] D. Phan, J. Yang, M. Clark, R. Grosu, J. Schierman, S. Smolka, and S. Stoller. “A
Component-Based Simplex Architecture for High-Assurance Cyber-Physical Sys-
tems”. In: 2017 17th International Conference on Application of Concurrency to System
Design (ACSD). 27 citations (Semantic Scholar/DOI) [2023-11-27]. Zaragoza: IEEE,
June 2017, pages 49–58. isbn: 978-1-5386-2867-6. doi: 10.1109/ACSD.2017.23.
url: http://ieeexplore.ieee.org/document/8104025/ (visited on Nov. 27,
2023).

[37] D. Seto, B. Krogh, L. Sha, and A. Chutinan. “The Simplex architecture for safe online
control system upgrades”. In: Proceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No.98CH36207). 110 citations (Semantic Scholar/DOI) [2023-06-16].
Philadelphia, PA, USA: IEEE, 1998, 3504–3508 vol.6. isbn: 978-0-7803-4530-0. doi:

58

https://doi.org/10.1109/TSE.1976.233837
https://ieeexplore.ieee.org/document/1702388
https://ieeexplore.ieee.org/document/1702388
http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://doi.org/10.1145/3457335.3461712
https://dl.acm.org/doi/10.1145/3457335.3461712
https://dl.acm.org/doi/10.1145/3457335.3461712
https://doi.org/10.1007/978-3-031-06773-0_12
https://link.springer.com/10.1007/978-3-031-06773-0_12
https://link.springer.com/10.1007/978-3-031-06773-0_12
https://doi.org/10.2514/6.2021-0525
https://arc.aiaa.org/doi/10.2514/6.2021-0525
https://arc.aiaa.org/doi/10.2514/6.2021-0525
https://doi.org/10.1109/ACSD.2017.23
http://ieeexplore.ieee.org/document/8104025/

Bibliography

10.1109/ACC.1998.703255. url: http://ieeexplore.ieee.org/document/
703255/ (visited on June 16, 2023).

[38] L. Sha. “Using simplicity to control complexity”. en. In: IEEE Software 18.4 (July
2001). 361 citations (Semantic Scholar/DOI) [2023-06-06], pages 20–28. issn: 0740-
7459. doi: 10.1109/MS.2001.936213. url: http://ieeexplore.ieee.org/
document/936213/ (visited on Apr. 18, 2023).

[39] M. Süßkraut, A. Schmitt, and J. Kaienburg. “Safe Program Execution with Diversi-
fied Encoding”. In: Embedded World. 2015, page 9.

[40] H. Xiang-Dong, Y. Hui-Mei, and Z. Xiao-Xu. “Design of dual redundancy CAN-bus
controller based on FPGA”. en. In: 2013 IEEE 8th Conference on Industrial Electronics
and Applications (ICIEA). Melbourne, VIC: IEEE, June 2013, pages 843–847. isbn:
978-1-4673-6322-8 978-1-4673-6320-4 978-1-4673-6321-1. doi: 10.1109/ICIEA.2013.
6566484. url: https://ieeexplore.ieee.org/document/6566484 (visited on
Jan. 16, 2024).

[41] J. Yang, M. A. Islam, A. Murthy, S. A. Smolka, and S. D. Stoller. “A Simplex Architec-
ture for Hybrid Systems Using Barrier Certificates”. In: Computer Safety, Reliability,
and Security. Edited by S. Tonetta, E. Schoitsch, and F. Bitsch. Volume 10488. Series
Title: Lecture Notes in Computer Science. Cham: Springer International Publishing,
2017, pages 117–131. isbn: 978-3-319-66265-7 978-3-319-66266-4. doi: 10.1007/978-
3-319-66266-4_8. url: http://link.springer.com/10.1007/978-3-319-
66266-4_8 (visited on Nov. 27, 2023).

[42] J. Yao, X. Liu, G. Zhu, and L. Sha. “NetSimplex: Controller Fault Tolerance Archi-
tecture in Networked Control Systems”. In: IEEE Transactions on Industrial Informat-
ics 9.1 (Feb. 2013). 41 citations (Semantic Scholar/DOI) [2023-11-27], pages 346–
356. issn: 1551-3203, 1941-0050. doi: 10.1109/TII.2012.2219060. url: http:
//ieeexplore.ieee.org/document/6303908/ (visited on Nov. 27, 2023).

59

https://doi.org/10.1109/ACC.1998.703255
http://ieeexplore.ieee.org/document/703255/
http://ieeexplore.ieee.org/document/703255/
https://doi.org/10.1109/MS.2001.936213
http://ieeexplore.ieee.org/document/936213/
http://ieeexplore.ieee.org/document/936213/
https://doi.org/10.1109/ICIEA.2013.6566484
https://doi.org/10.1109/ICIEA.2013.6566484
https://ieeexplore.ieee.org/document/6566484
https://doi.org/10.1007/978-3-319-66266-4_8
https://doi.org/10.1007/978-3-319-66266-4_8
http://link.springer.com/10.1007/978-3-319-66266-4_8
http://link.springer.com/10.1007/978-3-319-66266-4_8
https://doi.org/10.1109/TII.2012.2219060
http://ieeexplore.ieee.org/document/6303908/
http://ieeexplore.ieee.org/document/6303908/

A Appendix

Related Academic Conference Publications

This thesis is related to two conference submissions. One of these is directly based on the
contents of this thesis, the other references the use case discussed in this thesis and shares
a section with it.

A Safety-Critical Object Controller With Inherited Trust

This paper was written by Clemens Tiedt, Katja Assaf, Robert Schmid and Andreas Polze.
A condensed version of this thesis has been submitted to SafeComp 2024. The paper

focuses on the concept of inheriting trust across interface updates and provides an example
of this using the axle counting prototype developed in this thesis.

Updating safety-critical applications, such as adapting to a changed interface
specification, is expensive due to the safety assurances required. In the
railway sector, a shift toward standardized interfaces is happening to enhance
interoperability between different vendors’ components. The main European
initiative is EULYNX, whose specifications are under active development.
Due to the long lifetimes of railway systems, vendors are already building
EULYNX-compatible products. We describe a concept based on the Simplex
architecture to develop a controller that implements an updated interface
with consistent safety properties. We postulate that safety can be inherited
from an existing trusted controller at the cost of reducing the overall system’s
availability. We show the applicability of our approach and test our hypothesis
by providing a case study. In the case study, we build a EULYNX-compatible
object controller for axle counter modules, a safety-critical controller for train
detection that relies on the proven safety of a NeuPro object controller.

Dependable Dynamic Real-Time Systems: Examples For The Applicability Of
The Simplex Architecture

This paper was written by Katja Assaf, Robert Schmid, Clemens Tiedt, Frederic Reiter,
Dirk Friedenberger and Andreas Polze.

subsection 2.1.2 is quoted from the paper “Dependable Dynamic Real-Time Systems:
Examples For The Applicability Of The Simplex Architecture” which has been submitted
to ISORC 2024. The section was written by the author of this thesis. The axle counting
use case discussed in this thesis also appears as an example application of the Simplex
architecture in the thesis.

61

A Appendix

With the increasing reach and applicability of software systems, the demand
for their complexity increase. Complexity can also stem from continuous
changes in an application’s operating environment, scope, functional require-
ments, or the need to address security incidents.

Therefore, it becomes harder to ensure the functional safety of a complex
application before putting it into operation (offline assurance). Monitoring the
safe operation continuously during operation could be an escape from this
situation (online assurance).

The simplex architecture is one approach to enable online monitoring, upgrad-
ing, and the use of deep neural networks or COTS hardware in dependable
systems. This paper presents different architecture variants and their appli-
cations. We provide a classification for these applications according to their
goals, domain and architectural decisions. Concluding from the available
literature, we identify gaps in the research landscape and explore additional
fields for application.

62

Zusammenfassung

In der Eisenbahnindustrie findet aktuell ein Wandel in Richtung von standartisierten
Schnittstellen zwischen Komponenten der Leit- und Sicherungstechnik statt. Die pri-
märe europäische Intitative zur Entwicklung solcher Schnittstellen ist EULYNX, dessen
Spezifikationen aktiv weiter entwickelt werden. Diese Schnittstellen erhöhen die Interope-
rabilität und entkoppeln die Lebenszyklen von Komponenten. Allerdings werden duch
Aktualisierungen von Schnittstellen auch Aktualisierungen der Komponenten, die diese
Schnittstellen verwenden, notwendig. Da funktionale Sicherheit von höchster Relevanz
für die Eisenbahn ist, müssen Komponenten vor ihrer Verwendung in der Praxis einen
aufwändigen Zulassungsprozess durchlaufen. Aktualisierungen von sicherheitskritischen
Komponenten sind mit einer Neuzertifizierung verbunden. Allerdings ändern sich die
grundlegenden Aufgaben einer Komponente selten durch Änderungen an Schnittstellen.
Die meisten Aktualisierungen von Schnittstellen fügen nur Informationen (beispielsweise
Diagnose-Informationen) zu Nachrichten hinzu, ändern aber nicht deren existierende
Inhalte.

Diese Arbeit stellt ein Konzept basierend auf der Simplex-Architektur vor, um eine
Komponente zu entwickeln, die eine neuere Schnittstelle implementiert, aber deren Sicher-
heitseigenschaften konsistent mit einer existierenden, vertrauenswürdigen Komponente
sind. Wir stellen die These auf, dass es möglich ist, die Sicherheitseigenschaften einer
existierenden Komponente auf Kosten der Verfügbarkeit zu vererben.

Wir zeigen mittels eines Prototypen für einen Achszähl-Object-Controller die Anwend-
barkeit des Konzepts. Der Prototyp nutzt einen existierenden, zugelassenene Object Con-
troller, der die ältere NeuPro-Schnittstelle implementiert, um die Sicherheit eines Object
Controllers, der die neuere EULYNX-Schnittstelle implementiert, zu gewährleisten. In
drei Testfällen, die auf dem EULYNX-Standard basieren, zeigen wir, dass der Prototyp
sowohl korrektes als auch inkorrektes Verhalten des nicht vertrauenswürdigen Object
Controllers toleriert und auf Kosten einer reduzierten Verfügbarkeit sicher bleibt. Eine
Quellcode-Analyse des Prototypen mit Hilfe der zyklomatischen und kognitiven Komple-
xitätsmetriken zeigt, dass die Implementierung seiner zentralen Sicherheitskomponente,
des Entscheidungsmoduls, eine geringe Komplexität erfordert. Der Vergleich unseres
Simplex-basierten Ansatzes mit einer EULYNX-NeuPro-Übersetzungskomponente ergibt,
dass unser Ansatz bei Änderungen an der Schnittstelle nicht aktualisiert werden muss
und eine weniger komplexe Implementierung erfordert.

Um den Prototypen zulassen zu können, sind zwei große Änderungen erforderlich.
Zum einen läuft der Prototype auf einem Standard-Linux-Rechner. Für die Zulassung
müsste er auf eine sichere Plattform wie ARINC 653 portiert werden. Zum anderen nutzt
der Prototyp eine Ereignisschleifenarchitektur, welche nicht echtzeitfähig ist. Sie müsste
für die Zulassung in eine periodische Architektur überführt werden.

63

Eidesstattliche Erklärung

Hiermit versichere ich, dass meine Masterarbeit “The Simplex Architecture in Practice
– Runtime Assurance for Safety-Critical Railway Systems” (“Die Simplex-Architektur in
der Praxis – Konsistenzprüfung zur Laufzeit für sicherheitskritische Eisenbahnsysteme”)
selbständig verfasst wurde und dass keine anderen Quellen und Hilfsmittel als die an-
gegebenen benutzt wurden. Diese Aussage trifft auch für alle Implementierungen und
Dokumentationen im Rahmen dieses Projektes zu.

Potsdam, den 6. März 2024,

(Clemens Tiedt)

65

	1 Introduction
	1.1 CCS Overview
	1.2 Digitalization in the Railway Sector
	1.3 Introduction to Train Detection Systems
	1.4 Further areas of application
	1.5 Contribution

	2 Background and Related Work
	2.1 The Simplex Architecture
	2.1.1 The Basic Simplex Architecture
	2.1.2 Decision Module
	2.1.3 Architecture Variants

	2.2 Other Dependability Patterns
	2.2.1 Triple Modular Redundancy
	2.2.2 N-Version Programming
	2.2.3 Encoded Execution

	2.3 Related Work
	2.3.1 Railway Safety
	2.3.2 Other Simplex Applications
	2.3.3 Other Non-Simplex Applications

	3 Concept
	3.1 Use Case
	3.2 Requirements
	3.3 System Design
	3.3.1 Fault Model
	3.3.2 Comparison of Safety Patterns
	3.3.3 Error Handling Strategies
	3.3.4 Comparison of NeuPro and EULYNX

	3.4 Architecture
	3.4.1 Communication
	3.4.2 Unreliable Subsystem
	3.4.3 Trustworthy Subsystem
	3.4.4 Decision Module

	4 Implementation
	4.1 Tooling
	4.1.1 RaSTA Implementation and gRPC-RaSTA Bridge
	4.1.2 SCI Implementation
	4.1.3 Rust

	4.2 Hardware
	4.3 Software Architecture
	4.3.1 Axle Counter and Configuration
	4.3.2 Subsystems
	4.3.3 Decision Module

	4.4 Error Handling Strategies
	4.5 Timing Requirements

	5 Evaluation
	5.1 Experimental Evaluation
	5.1.1 Scenario
	5.1.2 Test Cases
	5.1.3 Experimental Setup
	5.1.4 Results

	5.2 Complexity of Decision Module
	5.3 Comparison with NeuPro-EULYNX translator

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References
	A Appendix

